Last Class: Clock Synchronization

 Physical clocks

* Clock synchronization algorithms
— Cristian’s algorithm

— Berkeley algorithm

* Logical clocks

m Computer Science CS677: Distributed OS Lecture 11, page 1
UMASS

Today: More Canonical Problems

» Causality

— Vector timestamps
* (Global state and termination detection

* Election algorithms

m Computer Science CS677: Distributed OS Lecture 11, page 2
UMASS

Causality

» Lamport’s logical clocks
— It A-> Bthen C(4) < C(B)
— Reverse 1s not true!!
* Nothing can be said about events by comparing time-stamps!
« If C(4) < C(B), then ??
* Need to maintain causality
— Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes
— Need a time-stamping mechanism such that:

» If T(A) < T(B) then A4 should have causally preceded B

m Computer Science CS677: Distributed OS Lecture 11, page 3
UMASS

Vector Clocks

 Each process i maintains a vector V,
— V.[i] : number of events that have occurred at 1
— V.[j] : number of events I knows have occurred at process j

» Update vector clocks as follows
— Local event: increment V [I]
— Send a message :piggyback entire vector V
— Receipt of a message: Vi/k] = max(V,[k],V;[k])
* Receiver 1s told about how many events the sender knows
occurred at another process &

* Also Vi[i] = V[i]+1
» Homework: convince yourself that if V'(4)<V(B), then A
causally precedes B

m Computer Science CS677: Distributed OS Lecture 11, page 4
UMASS

Global State

Global state of a distributed system
— Local state of each process
— Messages sent but not received (state of the queues)

* Many applications need to know the state of the system

— Failure recovery, distributed deadlock detection

* Problem: how can you figure out the state of a
distributed system?
— Each process 1s independent
— No global clock or synchronization

 Distributed snapshot: a consistent global state

m Computer Science CS677: Distributed OS Lecture 11, page 5
UMASS

Global State (1)

Consistent cut Inconsistent cut

Tlme —I P1 Time —»

/\ \\

P3 éq P3
Sender of m2 cannot
be identified with this cut

(a) (b)

a) A consistent cut
b) An inconsistent cut

m Computer Science CS677: Distributed OS Lecture 11, page 6
UMASS

Distributed Snapshot Algorithm

* Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

* Any process can initiate the algorithm
— Checkpoint local state
— Send marker on every outgoing channel

* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel

m Computer Science CS677: Distributed OS Lecture 11, page 7
UMASS

Distributed Snapshot

* A process finishes when

— It receives a marker on each incoming channel and processes

them all
— State: local state plus state of all channels
. e o M
— Send state to initiator / T
_y A~ m
* Any process can initiate snapshot \

— Multiple snapshots may be in progress

 Each 1s separate, and each 1s distinguished by tagging the
marker with the initiator ID (and sequence number)

m Computer Science CS677: Distributed OS Lecture 11, page 8
UMASS

Snapshot Algorithm Example

Incoming Qutgoing
message Process State message

e "4 ¥

1/ >

—H 4; Q — >
-l Local

Marker fllesystem

(a)

a) Organization of a process and channels for a distributed
snapshot

m Computer Science CS677: Distributed OS Lecture 11, page 9
UMASS

Snapshot Algorithm Example

==

o IR

. wg> o [ﬂDﬂ»Fw
SRR N [A

— t:j@@ @R@@d@

state
(b) (c) (d)

b) Process Q receives a marker for the first time and records its local
state

c) Qrecords all incoming message

d) Qreceives a marker for its incoming channel and finishes recording
the state of the incoming channel

m Computer Science CS677: Distributed OS Lecture 11, page 10
UMASS

Termination Detection

* Detecting the end of a distributed computation
* Notation: let sender be predecessor, receiver be successor
« Two types of markers: Done and Continue

 After finishing its part of the snapshot, process QO sends a Done or
a Continue to its predecessor

* Send a Done only when
— All of O’s successors send a Done

— QO has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— Else send a Continue

« Computation has terminated 1f the initiator receives Done
messages from everyone

m Computer Science CS677: Distributed OS Lecture 11, page 11
UMASS

Election Algorithms

* Many distributed algorithms need one process to act as
coordinator

— Doesn’t matter which process does the job, just need to pick one

 Election algorithms: technique to pick a unique
coordinator (aka leader election)

« Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

» Types of election algorithms: Bully and Ring algorithms

m Computer Science CS677: Distributed OS Lecture 11, page 12
UMASS

Bully Algorithm

* Each process has a unique numerical 1D

* Processes know the Ids and address of every other process
» Communication 1s assumed reliable

* Key Ildea: select process with highest ID

* Process initiates election 1f 1t just recovered from failure or
if coordinator failed

* 3 message types: election, OK, I won

» Several processes can 1nitiate an election simultaneously
— Need consistent result

« O(n?) messages required with n processes

m Computer Science CS677: Distributed OS Lecture 11, page 13
UMASS

Bully Algorithm Details

* Any process P can 1nitiate an election

» P sends Election messages to all process with higher Ids
and awaits OK messages

* If no OK messages, P becomes coordinator and sends /
won messages to all process with lower Ids

 If 1t recerves an OK, 1t drops out and waits for an / won

 If a process receives an Election msg, it returns an OK and
starts an election

 If a process receives a I won, 1t treats sender an
coordinator

m Computer Science CS677: Distributed OS Lecture 11, page 14
UMASS

Bully Algorithm Example
Election >@ ? OK @ w

Previous coordinator
has crashed

(@) (b) (©)

ge

The bully election algorithm

Process 4 holds an election

Process 5 and 6 respond, telling 4 to stop
Now 5 and 6 each hold an election

m Computer Science CS677: Distributed OS Lecture 11, page 15
UMASS

Bully Algorithm Example

(d) (e)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

m Computer Science CS677: Distributed OS Lecture 11, page 16
UMASS

