Last Class: RPCs and RMI

* Case Study: Sun RPC
* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues

m Computer Science CS677: Distributed OS Lecture 1, page 1
UMASS

Today: Communication Issues

* Message-oriented communication
— Persistence and synchronicity

* Stream-oriented communication

m Computer Science CS677: Distributed OS Lecture 1, page 2
UMASS

Sending host

Persistence and Synchronicity in Communication

Messaging interface

| Communication server Communication server

Receiving host

i
. Jr'l Buffer independent
N~ / Routing of communicating Routing o
Application / L program hgsts program Application
Pl / / ‘ F—
S % | To other (remote) v v —1 —
| |_| |_‘ communication L_J |_| EI
ﬂ: I server — = =
0s / 0s e 0s \os
/ | _] #lv _ “lk | _ | \
/ S T v T \\ lll
Local buffer Local network Internetwork } \

B - Local buffer
—r Incoming message

m Computer Science
UMASS

CS677: Distributed OS Lecture 1, page 3

Persistence

e Persistent communication

— Messages are stored until (next) receiver is ready
— Examples: email, pony express

' Post |~
Pony an(\f rider y office | . >
4 ¥ -
Post ﬁ Post |
office » | office
i S -
/ M| Post | ___ g
Mail stored and sorted, to - office
be sent out depending on destination

and when pony and rider available

m Computer Science

CS677: Distributed OS Lecture 1, page 4

Persistence

e Transient communication

— Message is stored only so long as sending/receiving application
are executing

— Discard message if it can’t be delivered to next server/receiver

— Example: transport-level communication services offer
transient communication

— Example: Typical network router — discard message if it can’t
be delivered next router or destination

m Computer Science CS677: Distributed OS Lecture 1, page 5
UMASS

Synchronicity

* Asynchronous communication
— Sender continues immediately after it has submitted the message
— Need a local buffer at the sending host

¢ Synchronous communication

— Sender blocks until message is stored in a local buffer at the
receiving host or actually delivered to sending

— Variant: block until receiver processes the message

* Six combinations of persistence and synchronicity

m Computer Science CS677: Distributed OS Lecture 1, page 6
UMASS

Persistence and Synchronicity Combinations

A sends message

A sends message
and continues A stopped

A stopped and waits until accepted funning

W nmng

Message is stored
at B's location for

later delivery \ Time
~ —p
. B starts and Bis not B starts and
Bis not receives running receives
running message message
@ (b)

a) Persistent asynchronous communication (e.g., email)
b) Persistent synchronous communication

m Computer Science
UMASS

CS677: Distributed OS

Persistence and Synchronicity Combinations

A sends message Send request and wait

Lecture 1, page 7

and continues

v
e
Message can be

_ sentonlyif Bis
|"4 running

| Time

B receives
message

until received

A 14
v
Request llll I,ll ACK

is received Vo Time
B — &Y o >
Running, but"doing Process
something else request

{d)

c) Transient asynchronous communication (e.g., UDP)
d) Receipt-based transient synchronous communication

m Computer Science
UMASS

CS677: Distributed OS

Lecture 1, page 8

Send request and wait until

Persistence and Synchronicity Combinations

Send request
accepted 'f' and wait for reply.
A — — A — e)
4 \ A
Request ‘\\ / Request I“. | Accepted
is received | { Accepted) is received | f)
— { Time — i / Time
B .Am___ O m— o B — q%--___,i:__ — o TR
Running, but doing Process Running, but doing Process
something else request something else request
() (®

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RCP)

f) Response-based transient synchronous communication (RPC)

m Computer Science
UMASS

CS677: Distributed OS Lecture 1, page 9

Message-oriented Transient
Communication

Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets

Server ST T

[socket F» bind | listen |- acht}—KﬁW—H write })—H close |

!
'

|

| !
B - - | ! . . il

Synchronization point %; ! Communication

| i i\

!

\ J , A |
socket Hconnectw close |
Client

m Computer Science
UMASS

CS677: Distributed OS Lecture 1, page 10

Berkeley Socket Primitives

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
?@ Computer Science CS677: Distributed OS Lecture 1, page 11

Message-Passing Interface (MPI)

* Sockets designed for network communication (e.g., TCP/IP)
— Support simple send/receive primitives

» Abstraction not suitable for other protocols in clusters of

workstations or massively parallel systems

— Need an interface with more advanced primitives

* Large number of incompatible proprietary libraries and protocols
— Need for a standard interface

* Message-passing interface (MPI)
— Hardware independent
— Designed for parallel applications (uses transient communication)

* Key idea: communication between groups of processes
— Each endpoint is a (groupID, processID) pair

m Computer Science CS677: Distributed OS Lecture 1, page 12
UMASS

MPI1 Primitives

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none
MPI_irecv Check if there is an incoming message, but do not block
?@ Computer Science CS677: Distributed OS Lecture 1, page 13

Message-oriented Persistent
Communication

* Message queuing systems
— Support asynchronous persistent communication

— Intermediate storage for message while sender/receiver are
inactive

— Example application: email

« Communicate by inserting messages in queues

* Sender is only guaranteed that message will be
eventually inserted in recipient’s queue
— No guarantees on when or if the message will be read
— “Loosely coupled communication”

m Computer Science CS677: Distributed OS Lecture 1, page 14
UMASS

Message-Queuing Model

) : Look-up .
Sender |~ transport-level Receiver
ol address of queue
A
. T - .
Queuing Yo 1 Queue-level -+ —| Queuing
| layer Y r address | A Iayer_
\ 4 ¥
Local OS Address look-up Local OS —
l h - Transport-level
Metwork
Primitive Meaning
Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify Install a handler to be called when a message is put into the specified queue.
m Computer Science CS677: Distributed OS Lecture 1, page 15
UMASS

Stream Oriented Communication

* Message-oriented communication: request-response

— When communication occurs and speed do not affect correctness
* Timing is crucial in certain forms of communication

— Examples: audio and video (“continuous media”)

— 30 frames/s video => receive and display a frame every 33ms
 Characteristics

— Isochronous communication

* Data transfers have a maximum bound on end-end delay and
jitter
— Push mode: no explicit requests for individual data units beyond
the first “play” request

m Computer Science CS677: Distributed OS Lecture 1, page 16
UMASS

Examples

Camera
C H

Display

Sink

Intermediate
Source _ nt_)de,_ possibly One sender
< with filters Multiple receivers

Lower bandwidth *‘]

m Computer Science CS677: Distributed OS Lecture 1, page 17
UMASS

Quality of Service (QoS)

* Time-dependent and other requirements are specified as quality of service (QoS)
— Requirements/desired guarantees from the underlying systems
— Application specifies workload and requests a certain service quality
— Contract between the application and the system

Characteristics of the Input Service Required

emaximum data unit size (bytes) sLoss sensitivity (bytes)

*Token bucket rate (bytes/sec) eLoss interval (psec)

*Toke bucket size (bytes) *Burst loss sensitivity (data units)

eMaximum transmission rate *Minimum delay noticed (usec)

(bytes/sec) eMaximum delay variation (usec)
*Quality of guarantee

m Computer Science CS677: Distributed OS Lecture 1, page 18
UMASS

Specifying QoS: Token bucket

Application

Vi
/-
K

-(_H_iﬁ—(_'ij%

Irregular stream
of data units

CJ

/ One token is added
| tothe bucket every AT
oo e

‘?1 Regular stream

The principle of a token bucket algorithm

Parameters (rate r, burst b)

CS677: Distributed OS

m Computer Science
UMASS

Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

Lecture 1, page 19

Setting Up a Stream: RSVP

Sender process RSVP-enabled host

— Policy | -4—— R
W control |
Application ' ™ 3
data stream T
.__A)
RSVP
‘ program ‘
— |
g lowios [T
Data link layer Admission
: control
Data link layer |- g
data stream » A - [
I
= —
Local network

Setup information to
other RSVP hosts

CS677: Distributed OS

m Computer Science
UMASS

i

SVP process

Reservation requests
_from other RSVP hosts

Internetwork

Lecture 1, page 20

