Last Class: RPCs and RMI

* Case Study: Sun RPC
* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues
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Today: Communication Issues

* Message-oriented communication
— Persistence and synchronicity

* Stream-oriented communication
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Persistence

e Persistent communication

— Messages are stored until (next) receiver is ready
— Examples: email, pony express
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Persistence

e Transient communication

— Message is stored only so long as sending/receiving application
are executing

— Discard message if it can’t be delivered to next server/receiver

— Example: transport-level communication services offer
transient communication

— Example: Typical network router — discard message if it can’t
be delivered next router or destination
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Synchronicity

* Asynchronous communication
— Sender continues immediately after it has submitted the message
— Need a local buffer at the sending host

¢ Synchronous communication

— Sender blocks until message is stored in a local buffer at the
receiving host or actually delivered to sending

— Variant: block until receiver processes the message

* Six combinations of persistence and synchronicity
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Persistence and Synchronicity Combinations
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a)  Persistent asynchronous communication (e.g., email)
b)  Persistent synchronous communication
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Persistence and Synchronicity Combinations

A sends message Send request and wait
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c) Transient asynchronous communication (e.g., UDP)
d) Receipt-based transient synchronous communication
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Send request and wait until

Persistence and Synchronicity Combinations

Send request
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e)  Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RCP)

f)  Response-based transient synchronous communication (RPC)
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Message-oriented Transient
Communication

Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets
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Berkeley Socket Primitives

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
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Message-Passing Interface (MPI)

* Sockets designed for network communication (e.g., TCP/IP)
— Support simple send/receive primitives

» Abstraction not suitable for other protocols in clusters of

workstations or massively parallel systems

— Need an interface with more advanced primitives

* Large number of incompatible proprietary libraries and protocols
— Need for a standard interface

* Message-passing interface (MPI)
— Hardware independent
— Designed for parallel applications (uses transient communication)

* Key idea: communication between groups of processes
— Each endpoint is a (groupID, processID) pair
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MPI1 Primitives

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none
MPI_irecv Check if there is an incoming message, but do not block
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Message-oriented Persistent
Communication

* Message queuing systems
— Support asynchronous persistent communication

— Intermediate storage for message while sender/receiver are
inactive

— Example application: email

« Communicate by inserting messages in queues

* Sender is only guaranteed that message will be
eventually inserted in recipient’s queue
— No guarantees on when or if the message will be read
— “Loosely coupled communication”
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Message-Queuing Model
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Primitive Meaning
Put Append a message to a specified queue
Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify Install a handler to be called when a message is put into the specified queue.
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Stream Oriented Communication

* Message-oriented communication: request-response

— When communication occurs and speed do not affect correctness
* Timing is crucial in certain forms of communication

— Examples: audio and video (“continuous media”)

— 30 frames/s video => receive and display a frame every 33ms
 Characteristics

— Isochronous communication

* Data transfers have a maximum bound on end-end delay and
jitter
— Push mode: no explicit requests for individual data units beyond
the first “play” request
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Quality of Service (QoS)

* Time-dependent and other requirements are specified as quality of service (QoS)
— Requirements/desired guarantees from the underlying systems
— Application specifies workload and requests a certain service quality
— Contract between the application and the system

Characteristics of the Input Service Required

emaximum data unit size (bytes) sLoss sensitivity (bytes)

*Token bucket rate (bytes/sec) eLoss interval (psec)

*Toke bucket size (bytes) *Burst loss sensitivity (data units)

eMaximum transmission rate *Minimum delay noticed (usec)

(bytes/sec) eMaximum delay variation (usec)
*Quality of guarantee
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Specifying QoS: Token bucket
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Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously
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Setting Up a Stream: RSVP
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