CMPSCI 677: Operating Systems
Spring 2001

Solution to Written Homework 1

1. True or false questions. Justify your answer in one or two sentences.

(a)

On a uniprocessor, a CPU can execute one process while another process is per-
forming a context switch.
Ans: False. While performing context switch, system is saving (or loading) the
state of the process including the content in CPU registers. It is impossible to
execute another process.

It is desirable for a CPU scheduler to give priority to I/O-bound threads over CPU-
bound threads.

Ans: True. I/O-bound threads normally have short CPU-burst time and require
short response time. Therefore it is desirable to have a higher priority for I/O-
bound thread than for CPU-bound thread.

"Hold and Wait”, one of the conditions required for deadlock to occur, means that
the process is holding the CPU while waiting for a resource.

Ans: False. "Hold and Wait” means the process is holding some resources(other
than CPU) while waiting for more resources.

Thrashing occurs when there is not enough physical memory allocated to a process
to keep the pages the process is actively using in memory.

Ans: True. If the process does not have all its actively using pages in physical
memory, it will very quickly page fault and must replace some page. However, if
all pages are in active use, it will have to replace a page that will be needed again
right away. Consequently, high paging activity and low CPU utilization (trashing)
will occur.

Contiguous allocation is a reasonable way to store files on write-once disks, such
as traditional CD-ROMs.

Ans: True. Since it is write-once, we don’t have to worry about dynamic storage
allocation or disk fragments. Thus contiguous allocation is best and easiest way to
store files.

Ethernet is commonly used to connect machines on a wide area network.
Ans: False. Ethernet is used to connect machines on a Local Area Network.

All interactive time-shared systems are also multiprogrammed systems.
Ans: True. In interactive time-shared system, when one process waits for I/0,
CPU is switched to another process.

Traps are a common mechanism used by the OS to implement all of the following:
system call, page fault, and illegal memory access.

Ans: True. A trap is a software-generated interrupt. It is often used for request of
operating system service from user program(system call) or errors(division by zero,
page fault, illegal memory access, etc).

(i)

()

Only a parent process can kill a child process.
Ans: False. A process can kill any other process if its process id is known, and the
user has the privilidge to do so.

A synchronization problem that requires counting semaphores can never be imple-
mented using locks.

Ans: False. Counting semaphores can be implemented by (shared) variable coun-
ters and locks.

Overlays allow contiguous memory allocation techniques to support process sizes
that are larger than the size of physical memory.

Ans: True. As long as the memory needed at the same time does not exceed the
size of physical memory, using overlay techniques can help.

Compaction algorithms are required in a memory system that uses pure segmen-
tation.
Ans: True. Otherwise there could be significant waste of external fragmentation.

Thrashing is less likely if you use a global page replacement scheme.
Ans: False. On the contrary, use local page replacement may limit the effects of
Thrashing.

Direct memory access (DMA) transfers increase contention on the system bus.
Ans: False. Use DMA will not increase the total amount of traffic need to be
transfered. It actually reduce the amount of bus traffic since with a single DMA
request to the controller a large amount of data can be transferred. But in interrupt
I/0, address must be specified for every word access.

Since a kernel thread is a thread that the kernel knows about, kernel threads have
faster context switches than user-level threads.

Ans: False. User level threads are managed through user-level libraries and doesn’t
need to trap to the kernal during a context switch. Therefore they have faster
context switches.

2. Write short answers

(a)

Since the shortest job first scheduling algorithm has provably optimal average wait-
ing times, would you use it to schedule processes in a conventional operating system.
Why or why not?

Ans: T would not use it to schedule processes in a conventional operating system.
Although SJF is provably optimal in minimizing average waiting time, there is no
way to know the length of CPU burst time for each of the processes. Another
problem is long jobs may starve.

What is LRU page replacement algorithm?

Ans: LRU stands for Least Recently Used algorithm. The idea is to replace the
page that has not been used for the longest period of time. LRU replacement
associates with each page the time of that page’s last use. When a page must be

(f)

replaced, LRU chooses the page that has not been used for the longest period of
time.

Give a 1-2 sentence definition of a system call.
Ans: System call is the method used by a process to request action by the operating
system such as process control, file or device manipulation and communication.

Explain how direct memory access (DMA) works and list some of its advantages.

Ans: To initiate a DMA transfer, the host writes a DMA command block into
memory. This block contains pointers to the source and destination of a transfer,
a counter of the number of bytes to be tranferred. The CPU writes the address
of this command block to the DMA controller, then goes on with other work.
The DMA controller then proceeds to operate the memory bus directly, placing
addresses on the bus to perform transfers without the help of the main CPU. Only
one interrupt is generated at the end of transfer. Comparing to the scheme with
no DMA support where an interrupt is generated for each word(or other memory
access unit) transfered, DMA greatly reduces the total number of interupts needed
for memory-device transfer. This could save lots of unnecessary operations (for
example interrupt service routine has to save the contents of some CPU registers)
so that CPU is available for other useful works. Thus using DMA is more efficient,
especially for high speed device.

What is a process control block (PCB) and what information does it store?

Ans: Process control block is used to represent a process in the operating system.
It contains the information associated with each specific process, which includes:
process state (new, ready, running, waiting or halted), program counter (PC),
CPU registers, CPU schedulign information (such as process priority, pointers to
scheduling queues, ...), memory-management information (such as page tables),
accounting information(such as amount of CPU time used), I/O status information
(List of open files, etc).

Why does a pure paging scheme not suffer from external fragmentation?

Ans: In pure paging scheme, physical memory is broken into fixed-sized blocks(frames).

Logical memory is also broken into broken into blocks of the same size(pages). When
a process is to be execute, its pages are loaded into avaiable memory on the frame
basis. Thus there won’t be any external fragmentations. However, internal frag-
mentations exist.

Consider an OS that improves disk performance using disk read-ahead. For what
kinds of file access patterns is disk read-ahead useful? Why is prefetching using
disk read-ahead easier than prefetching virtual pages into memory?

Ans: Disk read-ahead is useful for sequential disk access pattern. The assumption
is that reading block n makes it more likely that block n + 1 will be needed soon
after. Thus, loading block n+ 1 into memory (or disk cache) in advance will reduce
the access latency when block n+ 1 is actually requested. Since disk access is more
likely to be sequential, the assumption holds very well. However, in the case of
virtual page, predicting which page to prefetch might not be an easy task, and

even we can predict it fairly accurately, the page address needs to be translated
into disk block address before prefetching. Thus, prefetching virtual pages is more
difficult.

3. Consider a precedence graph in which program segment S3 must execute only after Sy
and Sy, and S; and S5 must execute only after Ss.

Assume that each of the S;’s is executed in a separate process P;. You may assume
that the processes are unrelated (i.e., the processes need not be created), and that each
process P; has exactly one computation step S;. Give the pseudo-code for the individual
processes using each of the following: (a) Semaphores (b) Locks (¢) UNIX fork() and
waitpid() system calls. Your C program syntax need not be correct. But the use of
the fork() and waitpid() system calls must be correct. You should permit the maximum
amount of concurrency possible. Also, discuss the appropriateness of monitors to achieve
this synchronization.

Ans:

(a)

var semi, sems, sems: semaphore;

semy, sems, semg is initailized to 0.

P P, Py Py Py
wait(sem;);
wait(sems); wait(sems); wait(sems);
S1; Sa; Ss; Sa; Ss;
signal(sem;) signal(sems) signal(sems)

signal(sems)

Here wait is the P operation and signal is the V' operation.

(b)
var locky, locks, locks, lock,: lock;
locky, locks, locks, lock, is initailized to BUSY.

Pl P2 P3 P4 P5
acquire(lock,);
acquire(locks); acquire(locks); acquire(lock,);
S1; S2; S3; S4; Ss;
release(lock;) release(locks) release(locks)
release(lock,)
()
main()

{

pid_t pidy,pida,pids,pids,pids;
if ((pid;=fork())==0)

S1;
exit(0);

if ((pidy=fork())==0)

Sa;
exit(0);

if ((pids=fork())==0)

waitpid(pid;,NULL,0);
waitpid(pids, NULL,0);
S3;

exit(0);

if ((pidy=fork())==0)

waitpid(pids,NULL,0);
S4;
exit(0);

if ((pids=fork())==0)

waitpid(pids,NULL,0);
Ss;
exit(0);
}
}

Use monitor with the support of condition variables, we can achieve this synchronization.
However, Si, ...,S5 is only be excuted once and in a fixed order(condition construct is
needed to ensure the order). Using monitor is not necessary indeed.

4. The local laundromat has just entered the computer age. As each customer enters,
(s)he puts coins into slots at one of two stations and selects the number of washes she
will need. The stations are connected to a central computer that automatically assigns
available machines and outputs tokens that also identify the machines to be used. The
customer places her laundry into a machine and inserts the appropriate token into the
machine. When a machine is done with a wash, it informs the computer that it is

available again. The computer maintains a boolean array available to represent if a
machine is available, and a semaphore nfree that indicates how many machines are
available. The code to allocate and release machines is as follows.

All the elements of the available array are initialized to true, and nfree is initialized
to NMACHINES.

semaphore nfree;
boolean available [NMACHINES];

allocate()
{
P(nfree);
for (int i=0; i< NMACHINES; i++)
if (available[i] == TRUE) {
available[i] = FALSE;
return i;
}
}

release(int machine)

{
available[machine] = TRUE;
V(nfree);

}

Explain how the program works. Does it work the way one would expect it to? If not,
how can you modify it to work correctly?

Ans: The program works by first initializing a counting semaphore to NMACHINES.
Each invokation of allocate() will first check the semaphore to see if there are free
machines available, if yes it decrements the semaphore and return a free machine to the
caller. Calling release() will return a free machine back to the pool of available machines,
then it increments the semaphore to notify this event.

The program will NOT work as expected. This is because array available is shared
among all the customers, customers may write to the available by calling allocate()
or release(), so access to available must be protected to avoid data inconsistency. For
example, when multiple customers simutaneously enter allocate(), since their execution
orders may be arbitrarily intermingled, the allocate() function may return the same
machine to more than one customer.

To remedy this problem, we need to introduce a mutex (lock or binary semaphore)
variable to protect the access of the array available, as shown below:

semaphore nfree NMACHINES;
semaphore mutex = 1;
boolean available [NMACHINES];

allocate()
{
P(nfree);

P(mutex) ; // change
for (int i=0; i< NMACHINES; i++)
if (available[i] == TRUE) {

available[i] = FALSE;

V(mutex) ; // change
return i;
}
V(mutex) ; // change
}
release(int machine)
{
P(mutex) ; // change
available[machine] = TRUE;
V(mutex) ; // change
V(nfree);
}

. Consider a disk that employs the shortest seek time first (SSTF) scheduling algorithm.
Assume that the disk has 100 tracks that are numbered from 1 to 100. Further assume
that the current disk head position is track number 52.

(a) In what order does the disk service requests for blocks that are stored on the
following tracks: 67 40 19 827 Assume tht all four requests arrive simultaneously.
Ans: According to shortest seek time first scheduling, the disk should serve the
requests in the order of 40 19 67 82.

(b) What is the total number of tracks across which the disk seeks to satisfy these
requests?
Ans: The total number of tracks across which the disk seeks is (52-40)+(40-
19)+(67-19)+(82-67)=96.

(c) What order are the requests serviced assuming the SCAN (elevator) disk scheduling
policy? Assume that the disk head is currently moving towards track 100 and that
the disk head always seeks to the highest and lowest numbered tracks (i.e., tracks
100 and 1) before reversing direction.

Ans: If SCAN disk scheduling policy is used, the disk will serve the requests in the
order of 67 82 40 19.

What is the total number of tracks across which the disk seeks in case of SCAN?
Ans: In the case of SCAN, the total number of tracks across which the disk seeks
is (67-52)+(82-67)+(100-82)+(100-40)+(40-19)=129.

Explain why SSTF scheduling tends to favor middle tracks over the innermost and
outermost tracks of a disk.

Ans: In SSTF scheduling, if the disk (read/write) head is even likely to be above
any track of the disk, then the expected number of tracks that the head travels over
to complete a request of middle tracks is less than that of innermost or outmost
tracks. For example, to satisfy a request on the track 50, the expect number of

100
tracks across which the disk seeks is Y- |50 —4|/100 = 25; while for request on track
i=1

100
100, the expect number of tracks is Y |100 — i|/100 = 49.5.
i=1

In standard uniprocessor Unix, explain why the following command will not pro-
duce a useful result.
sort < foobar > foobar

What (erroneous) result will it always produce ?

Ans: This command always erases the content in ”foobar” and results in an empty
file ”foobar”. The reason for this could be that before the process is excuted, it
first opens the file handle of ”foobar” both for read and for write. When ”foobar”
is opened for write, it is truncated to zero length. Notice that the input and
output use the same file handle. When the ”sort” process starts to be excuted, the
redirected standand input is merely an empty file. Thus nothing will be generated
by ”sort”, which results an empty output ”foobar”.

Why, and when, would the following command sometimes produce a useful result?
sort < foobar | (cat > foobar)

where the paranthesis is sh-ell notation to execute the contained command in a
sub-shell.

Ans: This command sometimes produces an empty file and sometimes gives a
correct result. The reason lies in the precedures of how this command is executed.
When shell reads this command, it creates a pipe with a pair of file handles: p-in
and p-out. Then it creates two processes in parallel, one of which excutes the task
”sort < foobar” and puts the output in p-in while the other reads input from p-
out and performs "cat > foobar”. However, the sequence of these two processes
being executed depends on the scheduling for that moment. If "cat > foobar”
gets the chance to be executed first, it will truncate ”"foobar” to zero length and
produce a wrong result. Or if "sort < foobar” is executed first, it will put the
output into pipe and when "cat > foobar” is executed, it reads the correct input
from the pipe and output to file ”foobar”.

