
WATCHMAN: A Data Warehouse Intelligent Cache
Manager

Peter Scheuermann Junho Shim Radek Vingralek

Department of Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60208
{peters,shimjh,radek}@eecs.nwu.edu

Abstract

Data warehouses store large volumes of data
which are used frequently by decision sup-
port applications. Such applications involve
complex queries. Query performance in such
an environment is critical because decision
support applications often require interactive
query response time. Because data ware-
houses are updated infrequently, it becomes
possible to improve query performance by
caching sets retrieved by queries in addi-
tion to query execution plans. In this pa-
per we report on the design of an intelligent
cache manager for sets retrieved by queries
called WATCHMAN, which is particularly
well suited for data warehousing environment.
Our cache manager employs two novel, com-
plementary algorithms for cache replacement
and for cache admission. WATCHMAN aims
at minimizing query response time and its
cache replacement policy swaps out entire re-
trieved sets of queries instead of individual
pages. The cache replacement and admission
algorithms make use of a profit metric, which
considers for each retrieved set its average rate
of reference, its size, and execution cost of
the associated query. We report on a perfor-
mance evaluation based on the TPC-D and

Penn&ion to copy without fee all or port of this material is
gmnted provided that the copies ore not mode or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the public&ion and its dote appear, and notice is
given that copying is by permission of the Very Large Doto Bose
Endowment. To copy otherwise, or to republish, requires o fee
and/or special permission from the Endowment.
Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

Set Query benchmarks. These experiments
show that WATCHMAN achieves a substan-
tial performance improvement in a decision
support environment when compared to a tra-
ditional LRU replacement algorithm.

1 Introduction

A data warehouse is a stand-alone repository of in-
formation integrated from several, possibly heteroge-
neous, operational databases [IK93, Wid95]. Data
warehouses are usually dedicated to the processing
of data analysis and decision support system (DSS)
queries. Unlike online transaction processing (OLTP)
queries which access only a few tuples in each relation,
DSS queries are much more complex and access a sub-
stantial part of the data stored in the warehouse. Con-
sequently, the response time of DSS queries is several
orders of magnitude higher than the response time of
OLTP queries. In order to support interactive query
processing, most commercial data warehouses incor-
porate parallel processing techniques as well as effi-
cient indexing techniques, such as bit maps, which are
geared towards keeping the response time at an ac-
ceptable level.

.

Compared to OLTP systems, data warehouses are
relatively static with only infrequent updates [IK93,
F’re95]. Consequently, the query engine may bene-
fit from caching at multiple levels: execution plans,
access paths and the actual retrieved sets of queries
[RCK+95]. Caching of the sets retrieved by queries
is particularly attractive in the warehousing environ-
ment because, DSS queries retrieve relatively small sets
of statistical data such as averages, sums, counts, etc.
DDS queries often follow a hierarchical “drill-down
analysis” pattern [IK93], where a query on each level
is a refinement of some query on the previous level.
Therefore, caching retrieved sets of queries at higher
levels is especially effective because such queries are

51

likely to occur frequently in a multiuser environment.
Cache replacement algorithms play a central role

in the design of any cache manager; these algo-
rithms have been extensively studied in the context
of operating system virtual memory management and
database buffer management [CD73, LWF77, Sto84,
EH84, CD85,OOW93]. Cache replacement algorithms
usually maximize the cache bit ratio, by attempting to
cache the most frequently referenced pages. However,
the real goal of caching is to improve some performance
metric based on response time or throughput. A page
replacement algorithm based on hit ratio optimization
can. be used for response time minimization in a re-
trieved,set cache only if all retrieved sets of queries
are of an equal size and all queries incur the same cost
of execution.

In this paper we report on the design of an intelli-
gent cache manager of retrieved sets of queries, called
WATCHMAN (WArehouse inTelligent CacHe MAN-
ager). WATCHMAN employs a novel cache replace-
ment algorithm which makes use of a “profit metric”
which considers for each retrieved set its average rate
of reference, its size and execution cost of the asso-
ciated query. WATCHMAN uses also a complemen-
tary cache admission algorithm, to determine whether
a retrieved set currently not materialized in the cache
should be admitted to the cache. We observe here that
cache admission algorithms are absent from database
buffer managers because most operating systems are
unable to manipulate data directly on disk and thus
every referenced page must be brought into the cache.
However, a cache admission algorithm is important in
our environment, especially in the presence of multi-
ple query classes. For example, caching a retrieved
set which is computed by performing a projection,
and is relatively inexpensive to execute, may cause
the eviction of several hundreds of sums and averages
whose evaluation may have involved computing expen-
sive multi-way joins. The cache admission algorithm
employed in WATCHMAN uses a similar profit met-
ric as in the cache replacement algorithm, with some
modifications to deal with the absence of any refer-
ence frequency information for newly retrieved sets.
Furthermore, WATCHMAN interacts with the buffer
manager by using hints supplied by the former to pro-
vide feedback that can be used to improve the hit ratio
of the latter.

The remainder of the paper is organized as follows.
In Section 2 we discuss the main novel features of
WATCHMAN, namely the cache replacement and ad-
mission algorithms, and the interaction with the buffer
manager. Section 3 discusses the current implemen-
tation status. Section 4 reports on experiments per-
formed on workloads based on the TPC-D [Tra95] and
Set Query [O’N93] benchmarks. We compare our algo-

rithms with a vanilla LRU strategy. Section 5 discusses
related work and we conclude the paper in Section 6.

2 WATCHMAN Design

The design of WATCHMAN incorporates two com-
plementary algorithms: one for cache replacement,
denoted as LNC-R (Least Normalized Cost Replace-
ment),. and the second one for cache admission, de-
noted as LNC-A (Least Normalized Cost Admission).
The cache replacement algorithm LNC-R can be used
stand-alone or integrated with the cache admission al-
gorithm LNC-A. We shall denote the integrated algo-
rithm as LNC-RA. Both algorithms aim at optimizing
the query response time by minimizing the execution
costs of queries that miss the cache. We proceed now
to discuss in more detail the two algorithms and then
we prove the optimality of LNC-RA within a simplified
model.

2.1 Cache Replacement Algorithm

As discussed above, LNC-R and LNC-A aim at min-
imizing the execution time of queries that miss the
cache instead of minimizing the hit ratio, as is the
case in buffer management. In buffer management,
the usual criterion for deciding which objects to cache
is based upon their probability of reference in the fu-
ture. Since future reference patterns are not available
in advance, the probability of a future reference is ap-
proximated from a past reference pattern under the
assumption that these reference patterns are stable. In
order to capture the actual execution costs (or savings)
of a retrieved set, LNC-R makes use of two additional
parameters in addition to the reference pattern. Thus,
LNC-R uses the following statistics for each retrieved
set RSi corresponding to query Qi:

l Xi: average rate of reference to query Qi.

l si: size of the set retrieved by query Qi.

l ci: cost of execution of query Qi.

LNC-R aims at minimizing the cost savings ratio

(CSR) defined as

0)

where hi is the number of times that references to
query Qi were satisfied from cache, and ri is the total
number of references to query Qi.

To achieve this goal, the above statistics are com-
bined together into one performance metric, called
profit, defined as

Xi * Ci
profit(RSi) = -

si

52

Let US assume that retrieved set RSj with size sj needs
to be admitted to the cache and the amount of free
space in the cache is less than sj. Then LNC-R sorts
all retrieved sets held in the cache in ascending order
of profit and selects the candidates for eviction in the
sort order. The justification for this heuristic is as
follows. For a given retrieved set R&, the term Xi . ci
determines’ the query execution cost savings due to
caching RSi. However, given two retrieved sets which
provide the same cost savings, the larger retrieved set
should be evicted first from the cache because it frees
more space for storage of the newly retrieved set RSj.

As pointed out in [OOW93], the LRU cache replace-
ment algorithm performs inadequately in the presence
of multiple workload classes, due to the limited ref-
erence time information it uses in the selection of the
replacement victim. Consequently, [OOW93] proposed
the LRU-K algorithm, which considers the times of the
last K 1 1 references to each page. To deal with the
possibility of workload variations, WATCHMAN uses
similar ideas to [CABK88, OOW93, SWZ94, VBW95]
in order to estimate Xi based on a moving average of
the last K inter-arrival times of requests to RSi. In
particular, we define Xi as

Xi = K
t - tK

where t is the current time and tK is the time of the
K-th reference. Including the current time t in (3)
guarantees the aging of retrieved sets which are not
referenced. To reduce overhead, the estimate of Xi is
updated only when the retrieved set is referenced or
at fixed time periods in absence of the former.

Whenever less than K reference times are available
for some retrieved set RSiy the average rate of ref-
erence Xi is determined using the maximal number of
available references. However, since retrieved sets with
fewer references have less reliable estimates of Xi, the
cache replacement algorithm gives them a higher pri-
ority for replacement. In particular, the LNC-R algo-
rithm first considers all retrieved sets having just one
reference in their profit order, then all retrieved sets
with two references, etc., as discussed in Figure 1.

The size si of retrieved set RSi is available at the
time of its retrieval. The cost, ci, of retrieving RSi may
be either provided directly by a query optimizer (in
this case WATCHMAN is integrated with the DBMS)
or can be calculated from the performance statistics
exported by most commercial DBMSs (e.g. the num-
ber of logical or physical block reads might be a good
estimate of the cost if the query execution costs are
dominated by disk I/O).

1 After normalizing by X = xi Xi.

2.2 Cache Admission Algorithm

The main goal of a cache admission algorithm is to
prevent caching of retrieved sets which may cause re-
sponse time degradation. For example, caching of a
set retrieved by a multi-attribute projection of a large
relation might evict the contents of the entire cache.
This would cause a relatively costly re-execution of
complex statistical queries, which originally occupied
only minimal space in the cache.

Ideally, WATCHMAN should cache a retrieved set
only if it improves the overall profit. Given a set
C of replacement candidates for a retrieved set RSi,
WATCHMAN decides to cache R& only if RSi has a
higher profit than all the retrieved sets in C. Namely,
RSi is cached only if the following inequality holds

profit(RSi) > profit(C) (4

where the profit of list C is defined as

profit(C) = CRSjEC ‘j .%

CRSj EC sj
(5)

Although the admission criterion defined by (4) is
intuitive, its straightforward implementation may not
be feasible. Namely, it is not clear how to calculate
the average reference rate Xi (and thus profit) for a
newly retrieved set RSi. As we shall discuss in Sec-
tion 2.4, WATCHMAN retains in many cases the ref-
erence times of retrieved sets that are evicted from the
cache. Thus, if RSi was previously cached, WATCH-
MAN may calculate Xi from the retained reference in-
formation if the latter is available. If less than K ref-
erence times are available, then Xi is calculated using
the maximal number of available samples. However,
if RSi is retrieved for the first time, there is no infor-
mation about past reference to RSi even if WATCH-
MAN stored reference information of all prior submit-
ted queries. In this case, WATCHMAN makes its de-
cision based on the only information available about
the newly retrieved set RSi: its size si and the cost ci
of execution of query Qi. We define for a retrieved set
RSi an estimated profit as

e-profit(RSi) = 2
I (6)

WATCHMAN caches RSi only if the following inequal-
ity is satisfied

e-profit(RSi) > e-profit(C) (7)

where the estimated profit of a list C is defined as

CRSj EC 9

e-profit(C) = CRsj EC sj

53

Although the decisions based on (7) are purely
heuristic, the experimental results in Section 4 show
that they always improve WATCHMAN’s perfor-
mance. In the sequel, we will refer to the LNC-R
cache replacement algorithm coupled with the above
admission algorithm LNC-A as LNC-RA. The com-
plete pseudo-code of LNC-RA can be-found in Figure
1.

2.3 Optimality of LNC-RA Under a Con-
strained Model

We first state our assumptions about the model. Let
{R&, RSz,. . . , RSn} be the set of retrieved sets of all
queries. We assume that the retrieved set reference
string ~1, ~2,. . . , ri,. . . is a sequence of independent
random variables with a common, stationary distribu-
tion {m,p2,. . . ,pn} such that Prob(ri = R&J = pk
for all i 1 1.

In order to minimize query response time, the cost
incurred by execution of queries missing the cache
should be minimized. Therefore, the optimal cache
replacement algorithm should cache retrieved sets
{RSi,i E I*}, I* 2 N = {1,2,. . . ,n} such that

min c Pi ’ Ci
iEN-I’

(9)

is satisfied, subject to the constraint

c Si 5 S
icl’

(10)

where S is the cache size2.
The problem defined by (9) and (10) is equivalent to

the knapsack problem, which is NP-complete [GJ79].
Consequently, there is no efficient algorithm for solv-
ing the problem. However, if we assume that sizes of
cached retrieved sets are relatively small when com-
pared with the total cache size S, and thus it is always
possible to utilize almost all space in the cache, then
we can restrict the solution space only to sets I* sat-
isfying

c Si = S (11)
iEI*

We show that under the assumption (ll), the op-
timal solution may be found by a simple greedy algo-
rithm, which we term LNC*. LNC* constructs I* in
the following way: First, it sorts {RSl, RS2, . . . , RS,,}
in a descending order of pi . ci/si. Then it assigns to
I* items from the start of the list until the space re-
quirement (10) is violated. We show that the solution
I* found by LNC’ is optimal.

Algorithm: LNC-RA
Input: retrieved set RSi

Si - size of RS;
ci - cost of execution of query Qi

corresponding to RSi
avail available free space in cache

Variables: rii - reference information holding last
K reference times to RS;

Xi - estimate of average inter-arrival rate
of references to RSi calculated from ri;

case (allocation state of RS;)
RSi in cache:

update ri;
RSi not in cache and avail > s;:

cache RSi
update rii

RSi not in cache and avail < si:
LNC-A(RSi)

Algorithm: LNC-A
Input: retrieved set RSi
C = LNC-R(si)
if (rii in cache) then

update rii
if (profit(RSi) > profit(C)) then

evict all retrieved sets in C
re am reference information

cache ldS, t . 1
fl

else
allocate rii
update rii
if (e-profit > e-profit(C)) then

evict all retrieved sets in C
// retain reference information

cache RSi
A

A

Algorithm: LNC-R
Input: s - space to be freed
output: C - list of candidate retrieved sets

for replacement
for i = 1 to K do

R; = list of retrieved sets with exactly i references
in ri arranged in increasing profit order

od
R = list of all retrieved sets arranged

in order RI < R2 < . . . < RK
c= minimal prefix of R such that c,,j,, sj 1 s

return C

Figure 1: Pseudo-code of LNC-RA.
2The optimal cache replacement algorithm may select the

retrieved sets for caching statically because the probability of
reference of each query is a priori known and stationary.

Theorem 1 The LNC’ algorithm finds the optimal
solution of the problem defined by (9) and (11).

Proof: Constraint (9) is equivalent to

max c Pi * ci
iEI’

Let I # I’ be an arbitrary subset of N satisfying (11).
We will show that &pi - Q s &. pi - ci. Since
LNC’ selects retrieved sets with maximal pi * ci/si, it
follows that

We can assume that I’ n I = 0. If not, then the
intersecting elements can be eliminated from both sets
while preserving (13). We define

Pmin * Cmin = miniEI.y (14)
Smin

Pmaz . Gna, Pi *Ci
= mazier -

smaz si
(15)

Since I* contains retrieved set references with maximal
pi*ci/si and I*nI = 0, it must be true that pmin’cmin 2

bin

P”;i,“;“= . Consequently,

c
pi.c. > pmin * kin -S > Pmaz . Cmaz I-

iEI*
S min Smnz

‘s 2 Cpi*Q
iEI

(16)
Therefore, we have shown that the set I: constructed
by LNC* indeed maximizes (12). Cl

We argue that the LNC-RA algorithm used by
WATCHMAN approximates LNC’. First, we point
out that pi = Xi/X where X = &,, Xi. Since
the probability distribution {pl ,pz, . . . ,p,,} is in gen-
eral unknown, the LNC-RA algorithm approximates
it by using a sample of last K references to each
retrieved set RSi. Thus the reference rate statis-
tics maintained by LNC-RA approximates the distri-
bution {pl,p2,..., p,} as K grows to infinity. Un-
like LNC’, the LNC-RA algorithm constructs the set
I of cached retrieved sets on-line. If the distribu-
tion {PI,PZ,. . . , p,} is stationary, then the set I con-
structed by LNC-RA converges to I’ for sufficiently
long reference strings (and K + po).

The optimality result in this section is an asymp-
totic one. We further study the transient behavior of
LNC-RA in Section 4 by comparing its performance
with vanilla LRU on the TPC-D and Set Query bench-
mark workloads.

2.4 Retained Reference Information Problem

In the design of the LRU-K page replacement algo-
rithm, [OOW93] point out a form of starvation, which

55

they term a “retained reference information problem”.
We recast the problem in our setting: Assume that
K > 1. Whenever a new retrieved set RSi is cached, it
is among the first candidates for replacement as it has
only incomplete reference information (i.e. it has fewer
than K reference times). If the reference information is
evicted from the cache together with the retrieved set
RSi, then upon re-referencing RSi, the reference in-
formation must be collected again from scratch. Con-
sequently, RSi is likely to be again evicted. There-
fore, the cache replacement algorithm cannot collect
sufficient reference information about RSi to cache it
permanently, irrespective of its reference rate.

[OOW93] propose to retain the reference informa-
tion of retrieved set RSi even after RSi has been
evicted from cache. Thus after K references, there
is enough reference information to cache RSi perma-
nently, provided its reference rate is sufficiently high.
To limit the total’ size of retained reference informa-
tion, [OOW93] propose to cache the retained refer-
ence information only for certain period after the last
reference to the retrieved set. They suggest the Five
Minute Rule [GP87] as a possible guideline for select-
ing the length of the period.

However, using a timeout based on the Five Minute
Rule leads to two problems in our setting. First, the
same period of time should not be used for retaining
all reference information. The retained reference infor-
mation associated with retrieved sets of large size that
are cheap to materialize is of little value and should
be dropped relatively soon, while the retained refer-
ence information related to small retrieved sets that
are expensive to materialize is valuable and should
be kept for longer periods. Second, a timeout period
based solely the Five Minute Rule does not take into
account the available cache size: For example, when
the cache is small, the retained reference information
must be evicted even earlier than 5 minutes after the
last reference.

Both problems can be resolved by a relatively sim-
ple policy:

l Retained reference information related to re-
trieved set RSi is evicted from cache whenever
the profit associated with RSi is smaller than the
least profit among all cached retrieved sets.

To be able to calculate the profit, the retrieved set size
si and the cost of execution of Qi must be retained
along with the reference information to RSi. When
evaluating the profit of a retrieved set which has less
than K reference times, we use the maximal available
number of reference times as in Section 2.2.

Clearly, retaining reference information related to
retrieved sets with profits smaller than the least profit

among all cached retrieved sets does lead not to per-
formance improvement because such retrieved sets
would immediately become candidates for replace-
ment, should they be cached.

The policy also addresses the two aforementioned
problems: first, retained reference information related
to large retrieved sets which are cheap to materialize
is kept for only a short period of time as their prof-
its are small. At the same time, retained reference
information related to small retrieved sets that are ex-
pensive to materialize is retained longer as their profits
are large. Second, the cache space occupied by the re-
tained reference information is scaled with the total
cache size. Should the size of the retained reference
information become too large compared with the total
cache size, the cache size left for storage of retrieved
sets shrinks and therefore the least profit of a cached
retrieved set increases, which in turn leads to evic-
tion of more retained reference information. Similarly,
should the size of the retained reference information
become too small, the least profit of a cached retrieved
set decreases and the policy for caching retained ref-
erence information becomes more liberal.

A similar starvation problem may also arise when
the admission algorithm determines not to cache a re-
trieved set. In this case, the reference information re-
lated to the set is retained and its ,residence in the
cache is guided by the above described policy. Conse-
quently, a retrieved set that is initially rejected from
cache may be admitted after a sufficient reference in-
formation is collected.

3 WATCHMAN Implementation

WATCHMAN is implemented as a library of routines
that may be linked with an application (e.g. a data
warehouse manager). Consequently, it is relatively
simple to add the WATCHMAN functionality on top
of an existing DBMS. Each cache entry consists of
query ID, array of K timestamps, retrieved set size,
cost of execution of the query, and a pointer to the
retrieved set. A query ID consists of the query string
(compressed by substituting all delimiters with a sin-
gle special character). In general, retrieved sets may
be stored either in main memory or on secondary stor-
age. The current version of WATCHMAN stores all
retrieved sets in main memory primarily to simplify
storage management.

In order to test whether a retrieved set of a given
query is cached, WATCHMAN employs an exact query
ID match. The cache hit ratio (and thus also the save-
up of query execution costs) can be improved by test-
ing for query equivalence. However, the query equiv-
alence problem was shown to be NP-hard [SKN89].
Several algorithms for testing special cases of query

equivalence were developed [CR94, GHQ95]. Any of
these algorithms could be adopted in WATCHMAN.
However, even the exact syntactic match might be pro-
hibitively expensive if calculated for all retrieved sets.
To speed up cache lookup, we add to each cache en-
try a signature, which is computed as a hash function
over the query ID. Consequently, only the cache en-
tries having a signature identical with the looked up
query need to be tested.

Although updates in data warehouses are not as fre-
quent as in OLTP databases [IK93, Fre95], they still
affect cache coherence. The current design of WATCH-
MAN assumes that the warehouse manager detects
whether the update is relevant to the cache content
and modifies the retrieved sets that are affected by
the update. The retrieved set modification can be de-
termined either by executing the corresponding query
from scratch or by detecting only incremental modifi-
cations (see [GM951 for a review of such techniques).

It is possible that some of the pages buffered dur-
ing execution of query Qi are redundant because the
retrieved set RSi is cached by WATCHMAN. If such
a page is not used by any other query, then its refer-
ence rate decreases and thus it should be eventually
dropped from the buffer pool. However, it is conceiv-
able that WATCHMAN provides hints to the buffer
manager by instructing it to evict those pages which
are used mostly by queries whose retrieved sets are
cached. Such hints, if correct, may free the buffer
space faster and thus improve the buffer manager’s
performance.

We designed a simulation testbed to study the inter-
action between WATCHMAN and the buffer manager.
The buffer manager implements the LRU page replace-
ment algorithm. In addition, the buffer manager takes
advantage of the hints sent from WATCHMAN and
moves selected pages to the end of the LRU chain.
For the purpose of simulation, WATCHMAN main-
tains with every buffered page its query reference set,
which consists of ID’s of all queries that referenced the
page. We say that a page is p-redundant if at least p%
of its query relevant set is cached by WATCHMAN.
After caching a retrieved set, WATCHMAN sends a
hint to the buffer manager to move all po-redundant
pages, for a fixed threshold po, to the end of its LRU
chain. We currently investigate various compressing
and sampling techniques to minimize the amount of
information necessary to compute the query reference
set of each buffered page. Our preliminary experimen-
tal results in Section 4 show that such a cooperation
between WATCHMAN and the buffer manager indeed
improves performance of the latter.

56

4 Performance Experiments

4.1 Experimental Setup

We tested the performance of WATCHMAN on traces
based on TPC-D [Tra95] and Set Query [O’N93]
benchmark workloads. The traces were gathered using
Oracle 7 DBMS running on a HP 9000/700 worksta-
tion.

Databases

We used databases of total size 30 Mbytes for
TPC-D benchmark and 100 Mbytes for Set Query
benchmark3. The relations were populated with syn-
thetic data according to the benchmark specifications
[Tra95, O’N93]. We had to scale down sizes of both
databases from their suggested 1 Gbyte (TPC-D) and
200 Mbytes (Set Query) sizes because of the excessive
time it took to collect traces of sufficient length.

Workload Traces

Each trace consists of a total of 17000 queries. With
each query we recorded in the trace a timestamp of the
retrieval time, query ID (see Section 3 for details), size
of the retrieved set and execution cost of the query. We
assumed that the query execution costs are dominated
by disk I/O. Therefore, we set the query execution
cost to the number of buffer block reads performed
during execution of the query. By considering block
reads from the buffer manager rather than physical
disk block reads, we made the cost estimate indepen-
dent of the current state of buffer manager. Conse-
quently, the execution cost of each query is given ‘by
the number of disk block reads which would be done
if no buffers were available.

The TPC-D queries are in fact query templates
which are instantiated with parameters generated ran-
domly from pm-defined intervals. Therefore, the trace
is obtained by running 17000 instances of the query
templates with random parameters generated accord-
ing to the benchmark specification rules. Because
the parameter intervals are of different sizes, the to-
tal number of instances for each query template varies
substantially from an order of 10 to an order of 10i5.
Consequently, the trace captures the “drill-down anal-
ysis” query distribution [IK93]: queries at high sum-
marization levels repeat frequently within each trace,
while queries at low summarization levels do not re-
peat at all. Because we view the problems of cache
coherence as independent of the problems of cache
replacement and admission studied in this paper, we
excluded the two update templates from TPC-D and
used only the remaining 17 query templates.

3The reported sizes do not include indices.

Although the Set Query benchmark also consists of
several query templates, the total number of all in-
stances does not exceed 100. Consequently, we modi-
fied the parameterization of the Set Query benchmark
to obtain a larger instance space. Similarly to TPC-D,
we modeled the “drill-down analysis” query distribu-
tion.

Performance Metrics

The cost savings ratio (CSR) defined in Section 2.1 is
the primary performance metric in all reported results.

As a secondary metric we use the cache hit ratio
(HR) defined as

HR- Lhi
ci Ti (17)

where hi is the number of times that references to
query Qi were satisfied from cache, and pi is the total
number of references to query Qi.

As a tertiary metric we consider the average ezter-
nal fragmentation of a cache which is defined as the
average fraction of unused cache space.

4.2 Experimental Results

Inflnite Cache

We ran experiments with an unlimited cache size in or-
der to study the potential of caching in our traces. The
results in Figure 2 show that cost savings and hit ratios
are relatively high on both traces indicating that both
traces have a high reference locality. The Set Query
benchmark trace yields a smaller.hit ratio than TPC-
D, but a higher cost savings ratio. We believe that
this is due to the fact that all TPC-D queries perform
costly joins, while many Set Query queries are inex-
pensive projections. Consequently, the distribution of
query execution costs is more skewed in the Set Query
benchmark.

CSR HR cache size db size
TPC-D 0.73 0.72 17.7 MB 30 MB
SQ 0.92 0.65 16.1 MB 100 MB

Figure 2: Performance with infinite cache.

Impact of selection of K

Selection of a larger K improves the estimates of re-
trieved set reference rates. Consequently, it leads to
an improvement of both cost savings and hit ratios.
In Figure 3 we illustrate a typical behavior on exper-
iments with a cache size set to 1% of database size.
The improvement is quite strong in the case of LRU-K

57

(48.1% on TPC-D and 29.2% on Set Query). Some-
what surprisingly, the improvement of LNC-RA is not
as strong (9.2% on TPC-D and 3.1% on Set Query).
We conjecture that this is due to the relative simplicity
of our workloads. The choice of K could play a more
significant role under multi-class workloads in which
each class has different reference characteristics.

0.2 +LNC-RA
-o-LRU

0.0 + I I I
I 2 4

K

TPC-D: cache size = 1% database size
0.8 .

0.4 , I I
I 2 4

K

Set Query: cache size = 1% database size

Figure 3: Impact of K on performance.

Algorithm Performance Comparison

We studied the performance improvement of LNC-
RA when compared with the vanilla LRU. A compar-
ison of the performance of LNC-RA with LNC-R is
also of interest, since LNC-RA makes heuristic de-
cisions and thus it is not a priori clear whether its
performance is always better than the performance of
LNC-R. The cost savings and hit ratios of LNC-RA,
LNC-R (with K set to 4) and vanilla LRU (K = 1) for
various cache sizes can be found in Figures 4 and 5,
respectively. We considered cache sizes ranging from
0.1% to 5% of database size. This is a realistic assump-
tion for data warehouses with sizes on the order of 1 -
10 Gbytes. For comparison, we include in each graph
also the maximal cost savings and hit ratios that can
be achieved with an infinite cache (inf).

The LNC-RA algorithm provides consistently bet-
ter performance than LRU. LNC-RA achieves cost sav-
ings ratios that are, on average, 4 times better on the

0.6 -

cache size (% of databsre size)

1.0
WC-D: cost savings ratio

1

0 I 2 3 4 5
cache size (96 of database size)

Set Query: cost savings ratio

Figure 4: Cost Savings Ratios.

---. inf
- LNC-FZA
- LNC-R
- LRU

---.inf

-LNC-RA
+ LNC-R
-LLRU

TPC-D trace and 2.3 times better on the Set Query
trace when compared with the vanilla LRU! The im-
provement obviously diminishes with the cache size: It
is maximal for the smallest cache size, when LNC-RA
improves LRU cost hit ratio by factor of 4.7 on the
TPC-D trace and 7 on the Set Query trace. LNC-RA
also exhibits similar performance improvement for hit
ratios as shown in Figure 5. However, cost savings ra-
tios converge much faster to the maximal achievable
level when compared with the hit ratios.

Although the cache admission policy makes heuris-
tic decisions in absence of reference information about
newly retrieved sets, it always improves the overall per-
formance, as Figures 4 and 5 show. LNC-RA achieves
cost hit ratios that are, on average, a 32% improvement
over LNC-R on TPC-D trace and a 6% improvement
on Set Query trace. Again, the improvement dimin-
ishes with the cache size: The maximal improvement
is 88% on TPC-D trace and 30% on Set Query trace.

58

1.0

0.8 1
0.6 -

gi

0.4 -

O.O~
cache size (% of database size)

1.0

1

TPC-D: hit ratio

0.0-m
0 1 2 3 4 5

---.inf

- LNC-RA
4 LNC-R
--f LRU

---.inf
t- LNC-RA
--)c LNC-R
--t LRU

cache size (W of database size)

Set Query: hit ratio

Figure 5: Hit Ratios.

External Cache Fragmentation

The optimality results from Section 2.3 rely on the
fact that the total unused cache space due to exter-
nal fragmentation is negligible. We therefore studied
experimentally the degree of external fragmentation.

As Figure 6 shows, the external fragmentation of
LNC-RA is indeed negligible: the fraction of used
space does not drop below 96% and typically remains
at 98.5 %. LNC-R and LRU cannot prevent caching
of large retrieved sets because they do not employ any
cache admission algorithm. Consequently, they utilize
storage space less efficiently than LNC-RA, but their
external fragmentation is still relatively insignificant:
the fraction of used space never drops below 88% and
on average stays at 94.8%.

100

g 80

p60 n LNC-RA
VI s LNC-R
z
3

40 m LRU

; 20

0
0.2 0.5 1. 2. 3. 4. 5.

cache size (I of database size)

TPC-D -------.

n WC-RA

s LNC-R
m LRU

0
0.2 0.5 1. 2. 3. 4. 5.

cache size (% of database size)

Set Query

Figure 6: External Fragmentation.

Interaction with the Buffer Manager

We studied the impact of using the hints sent from
WATCHMAN to the buffer manager on performance
of the latter, namely its hit ratio. Recall that each
hint consists of ID’s of all pages that are po redundant
for a fixed level of PO. Upon receipt of such a hint, the
buffer. manager moves all the qualifying pages to the
end of its LRU chain. We report here our preliminary
results. We simulated an environment with 15 Mbyte
page buffer pool, 15 Mbyte WATCHMAN cache and
14 relations of total size 100 Mbytes. The workload
consisted of 17000 queries run against the database
resulting in more than 26 million page references. Due
to space limitation, we refer to [SSVSS] for additional
details on the experimental setup.

In our experiments, we observed the buffer man-
ager hit ratios as we decreased the threshold po from
100% to 0%. The experimental results can be found
in Figure 7. We found that by using the hints it is
possible to improve the buffer manager hit ratio from
0.71 up to 0.80 when po = 60%. However, further de-
crease of po leads to eviction of pages that are used by
many other queries. Consequently the buffer manager
hit ratio drops down to 0.40 when the modified LRU
degenerates to MRU 030 = 0%). Therefore, WATCH-
MAN’s hints indeed have a potential to improve the
performance of buffer manager4.

4We are currently conducting additional experiments with
different workloads to evaluate the impact of the interaction

59

0.0] 1 1 I I I
0 20 40 60 80 100

PO 6)

Figure 7: Effects of Hints on Buffer Perfor-
mance.

5 Related Work

Sellis studied cache replacement algorithms in the con-
text of caching retrieved sets of queries with proce-
dures [Se188]. He suggested that the algorithms should
also consider retrieved set size and cost of query execu-
tion in addition to the reference rate. Several cache re-
placement algorithms were proposed which either rank
the retrieved sets using only one of the parameters or
a weighted sum of all of them. However, no guideline
for setting the weights is provided. Unlike LNC-R, the
proposed algorithms do not maximize query execution
cost savings. The performance of the algorithms is not
studied either analytically or experimentally. Caching
of retrieved sets of queries containing either proce-
dures or method invocations was subsequently studied
in [Jhi88, He194, KKM94]. However, the work con-
centrates primarily on cache organization, integration
with query optimization, and update handling rather
than on the design of cache replacement and admission
algorithms.

Keller and Basu propose a cache replacement algo-
rithm for materialized predicates which is similar to
LNC-R [KB96]. Unlike LNC-R, however, it considers
only the last reference to each predicate. The perfor-
mance of the algorithm is not studied either analyti-
cally or experimentally. No explicit cache admission
algorithm is considered.

The ADMS database system benefits from caching
at multiple levels [CR94, RCK+95]. Both retrieved
sets and pointers to their tuples may be cached. Effi-
cient algorithms for both cache updating and testing of
a limited form of query equivalence are designed. LRU,
LFU and Largest Space Required (LCS) replacement
algorithms are adopted and their performance is ex-
perimentally studied [CR94]. The experimental results
indicate that LRU consistently provides the worst per-
formance, while LCS the best. This is in accord with
our experimental findings which show that the more

between WATCHMAN and buffer manager.

information a cache replacement algorithm uses, the
better the performance it achieves. However, unlike
LNC-RA, none of these algorithms aims at maximiz-
ing the query execution cost savings.

Harinarayan et. al. design an algorithm for se-
lective pre-computation of decision support queries
[HRU96]. Their algorithm minimizes the storage re-
quirements. However, it does not take into account
workload characteristics. We view this work as com-
plementary to ours. Certainly, it is beneficial to bring
some retrieved sets to cache before they are referenced.
However, on demand caching is also important due to
its ability to dynamically adapt to the workload char-
acteristics.

Design of efficient buffer replacement algorithms
has gained lots of attention [LWF77, EH84, Sto84,
CD85, OOW93, FNS95]. In particular, the LRU-K
cache replacement algorithm [OOW93] is closely re-
lated to LNC-RA in its use of last K reference times
to every cached object. However, unlike LNC-RA the
buffer replacement algorithms rely on an uniform size
of all pages and an uniform cost of fetching each page
into the cache. The sliding window estimate of re-
quest arrival rates similar in Section 2.1 is similar to
the notion of “heat” used in several distributed DBMS
projects [CABK88, SWZ94, VBW95].

To the best of our knowledge, none of the previous
works formulated an integrated cache replacement and
admission algorithm which consider the last K refer-
ence times to each retrieved set, as well as, a profit
metric incorporating our statistics. Furthermore, no
previous works evaluated the performance benefits of
using such algorithm on standard decision support
benchmarks.

6 Conclusions and Future Work

We have presented the design of an intelligent data
warehouse cache manager WATCHMAN. WATCH-
MAN employs novel cache replacement and cache ad-
mission algorithms. The algorithms explicitly consider
retrieved set sizes and execution costs of the associ-
ated queries in order to minimize the query response
time. We have shown the optimality of the cache re-
placement and admission algorithms within a simpli-
fied model. We evaluated the performance of WATCH-
MAN experimentally using the TCP-D and Set Query
benchmarks.

In summary, the experimental results show that
the cache replacement algorithm used by WATCH-
MAN, LNC-RA, improves the cost savings ratio, on
average, by a factor of 3, when compared with the
vanilla LRU. The cache admission algorithm LNC-A,
although based on a heuristic, improves the cost sav-
ings ratio by an average of 19%. Using more than

60

the last reference time to a retrieved set improves cost
savings ratio of LNC-RA on average by 5%. Exter-
nal cache fragmentation of LNC-RA is minimal (less
than 4% of the cache size). Therefore, the assump-
tions made in Section 2.3 are justified. We also show
that the WATCHMAN’s hints can improve the perfor-
mance of buffer manager.

We are currently investigating the following topics:

l Multiclass workloads. Our experiments show that
the performance improvement by selecting K > 1
is relatively insignificant. When generating the
query stream, we attempted to maximally adhere
to the benchmark specification rules. However,
such a workload fails to model an environment
with a query stream consisting of multiple classes
of queries, each with a different reference char-
acteristics. It has been argued in [OOW93] that
this is the type of environment in which retaining
more than the last reference is most beneficial.
We intend to study such workloads.

l Query equivalence testing. The cache hit ratio
(and thus also the cost savings ratio) can be im-
proved by testing for some special cases of query
equivalence rather than looking only for an exact
query match. An ideal test should cover a suf-
ficiently wide range of equivalence cases, but at
the same time incur only minimal overhead. To
our best knowledge, only a single testing method
has been developed for queries with aggregates
(GHQ95]. However, this method, based on a set
of rewrite rules, appears to be too expensive to
be used in our setting. We therefore intend to
pursue the development of a simpler method for
WATCHMAN.

References
[CABK88] G. Copeland, W. Alexander, E. Bougher,

and TI Keller. Data placement in Bubba.
In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of
Data, 1988.

[CD731

[CD851

[CR941

E. Coffman and P. Denning. Operating Sys-
tems Theory. Prentice-Hall, 1973.

H. Chou and D. Dewitt. An evaluation
of buffer management strategies for rela-
tional database systems. In Proceedings
of the International Conference on Very
Large Databases, 1985.

C. Chen and N. Roussopoulos. The im-
plementation and performance evaluation
of the adms query optimizer: Integrating

[EH84]

[FNS95]

[Fre95]

WQW

[GJ79]

[GM951

[GP87]

[He1941

[HRU96]

[IK93]

[Jhi88]

query result caching and matching. In Pro-
ceedings of the International Conference on
Extending Database Technology, 1994.

W. Effelsberg and T. Haerder. Principles of
database buffer management. ACM T3-ans-
actions on Database Systems, 9(4), 1984.

C. Faloutsos, R. Ng, and T. Sellis. Flexi-
ble and adaptable buffer management tech-
niques for database management systems.
IEEE Transactions on Computers, 44(4),
1995.

C. French. Do ‘One size fit’s all’ database
architectures work? In Proceedings of the
ACM SIGMOD International Conference
on Management of Data, 1995.

A. Gupta, V. Harinarayan, and D. Qusss.
Aggregate-query processing in data ware-
housing environments. In Proceedings
of the International Conference on Very
Large Databases, 1995.

M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

A. Gupta and I. Mumick. Maintenance of
materialized views: Problems, techniques,
and applications. IEEE Data Engineering
Bulletin, 18(2), 1995.

J. Gray and F. Putzolu. The five minute
rule for trading memory for disk accesses
and the 10 byte rule for trading memory for
CPU time. In Proceedings of the ACM SIG-
MOD International Conference on Man-
agement of Data, 1987.

J. Hellerstein. Practical predicate place-
ment. In Proceedings of the ACM SIGMOD
International Conference on Management
of Data, 1994.

V. Harinarayan, A. Rajaraman, and J. Ull-
man. Implementing data cubes efficiently.
In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of
Data, 1996.

W.H. Inmon and C. Kelley. Rdb/VMS: De-
veloping the Data Warehouse. QED Pub-
lishing Group, 1993.

A. Jhingran. A performance study of query
optimization algorithms on a database sys-
tem supporting procedures. In Proceedings

61

[KB96]

[KKM94]

[LWF77]

[O'N93]

[OOW93]

of the International Conference on Very
Large Databases, 1988.

A. Keller and J. Basu. A predicate-based
caching scheme for client-server database
architectures. The VLDB Journal, 5,1996.

A. Kemper, C. Kilger, and G. Moerkotte.
Function materialization in object bases:
Design, realization, and evaluation. IEEE
tinsaction on Knowledge and Data Engi-
neering, 6(4), 1994.

T. Lang, C. Wood, and E. Fernandez.
Database buffer paging in virtual storage
systems. ACM tinsactions on Database
Systems, 2(4), 1977.

P. O’Neil. The set query benchmark. In
J. Gray, editor, The Benchamark Handbook
(2nd editionj. Morgan Kaufmann, 1993.

E. O’Neil, P. O’Neil, and G. Weikum.
The LRU-K page replacement algorithm
for database disk buffering. In Proceedings
of the ACM SIGMOD International Con-
ference on Management of Data, 1993.

@CK+95] N. Roussopoulos, C. M. Chen, S. Kelley,
A. Dellis, and Y. Papakonstantinou. The
Maryland ADMS project: Views R Us.
IEEE Data Engineering Bulletin, 18(2),
1995.

[Se1881 T. Sellis. Intelligent caching and indexing
techniques for relational database systems.
Information Systems, 13(2), 1988.

[SKN89] X. S un, N. Kamel, and L. Ni. Solving impli-
cation problems in database applications.
In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of
Data, 1989.

[SSVSS] P. Scheuermann, J: Shim, and R. Vin-
gralek. WATCHMAN: A data warehouse
intelligent cache manager. Technical re-
port, Northwestern University, 1996.

[Sto84] M. Stonebraker. Virtual memory transac-
tion management. ACM Operating Systems
Review, 18(2), 1984.

[SW2941 P. Scheuermann, G. Weikum, and P. Zab-
back. Disk cooling in parallel disk sys-
tems. IEEE Data Engineering Bulletin,
17(3), 1994.

Transaction Processing Performance Coun-
cil. TPC Benchmark D, 1995.

[VBW95] R. Vingralek, Y. Breitbart, and
G. Weikum. SNOWBALL: scalable storage
on networks of workstations with balanced
load. Technical Report 269-95, University
of Kentucky, 1995.

[Wid95] Jennifer Widom. Research problems in
data warehousing. In Proceedings of the In-
ternational Conference on Information and
Knowledge Management, 1995.

62

