Network Security

- introduction
- cryptography
- authentication
- key exchange
- Reading: Tannenbaum, section 7.1
 Ross/Kurose, Ch 7 (which is incomplete)

Intruder may
- eavesdrop
- remove, modify, and/or insert messages
- read and playback messages
Important issues:

- cryptography: secrecy of info being transmitted
- authentication: proving who you are and having correspondent prove his/her/its identity

Security in Computer Networks

User resources:

- login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)
- passwords provide little protection
Network resources:
- often completely unprotected from intruder
eavesdropping, injection of false messages
- mail spoofs, router updates, ICMP messages, network management messages

Bottom line:
- intruder attaching his/her machine (access to OS code, root privileges) onto network can override many system-provided security measures
- users must take a more active role

Encryption

plaintext: unencrypted message

ciphertext: encrypted form of message

Intruder may
- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms
A simple encryption algorithm

Substitution cipher:

- replace each plaintext character in message with matching ciphertext character:

plaintext: Charlotte, my love

ciphertext: iepksgmm, dz sgby

- key is pairing between plaintext characters and ciphertext characters
- symmetric key: sender and receiver use same key
- 26! (approx 10^{26}) different possible keys: unlikely to be broken by random trials
- substitution cipher subject to decryption using observed frequency of letters
 - 'e' most common letter, 'the' most common word
DES: Data Encryption Standard

- encrypts data in 64-bit chunks
- encryption/decryption algorithm is a published standard
 - everyone knows how to do it
- substitution cipher over 64-bit chunks: 56-bit key determines which of 56! substitution ciphers used
 - substitution: 19 stages of transformations, 16 involving functions of key

- decryption done by reversing encryption steps
- sender and receiver must use same key
Key Distribution Problem

Problem: how do communicants agree on symmetric key?
- N communicants implies N keys

Trusted agent distribution:
- keys distributed by centralized trusted agent
- any communicant need only know key to communicate with trusted agent
- for communication between i and j, trusted agent will provide a key

We will cover in more detail shortly
Public Key Cryptography

- separate encryption/decryption keys
 - receiver makes known (!) its encryption key
 - receiver keeps its decryption key secret
- to send to receiver B, encrypt message M using B's publicly available key, EB
 - send EB(M)
- to decrypt, B applies its private decrypt key DB to receiver message:
 - computing DB(EB(M)) gives M

Question: good encryption/decryption algorithms
RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:
- choose two prime numbers, \(p, q \) greater than \(10^{100} \)
- compute \(n=pq \) and \(z = (p-1)(q-1) \)
- choose number \(d \) which has no common factors with \(z \)
- compute \(e \) such that \(ed = 1 \mod z \), i.e.,
 \[
 \text{integer-remainder} \left(\frac{ed}{(p-1)(q-1)} \right) = 1, \text{ i.e.,}
 \]
 \[ed = k(p-1)(q-1) + 1\]
 - three numbers:
 - \(e, n \) made public
 - \(d \) kept secret

RSA (continued)

to encrypt:
- divide message into blocks, \(\{b_i\} \) of size \(j: 2^j < n \)
- encrypt: \(\text{encrypt}(b_i) = b_i^e \mod n \)

to decrypt:
- \(b_i = \text{encrypt}(b_i)^d \)

to break RSA:
- need to know \(p, q \), given \(pq=n \), \(n \) known
- factoring 200 digit \(n \) into primes takes 4 billion years using known methods
RSA example

- choose $p = 3$, $q = 11$, gives $n = 33$, $(p-1)(q-1) = z = 20$
- choose $d = 7$ since 7 and 20 have no common factors
- compute $e = 3$, so that $ed = k(p-1)(q-1) + 1$ (note: $k = 1$ here)

<table>
<thead>
<tr>
<th>plaintext</th>
<th>e=3</th>
<th>ciphertext</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>#</td>
<td>^3 #^3 mod 33</td>
</tr>
<tr>
<td>S</td>
<td>19</td>
<td>6859 28</td>
</tr>
<tr>
<td>U</td>
<td>21</td>
<td>9261 21</td>
</tr>
<tr>
<td>N</td>
<td>14</td>
<td>2744 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ciphertext</th>
<th>d=7</th>
<th>plaintext</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>c^7</td>
<td>c^7 mod 33</td>
</tr>
<tr>
<td>28</td>
<td>13492928512</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>1801</td>
<td>21</td>
</tr>
</tbody>
</table>
Further notes on RSA

why does RSA work?
- crucial number theory result: if p, q prime then
 \[b_i^{(p-1)(q-1)} \mod pq = 1 \]
- using mod pq arithmetic:
 \[(b^e)^d = b^{ed}\]
 \[= b^{k(p-1)(q-1)+1} \text{ for some } k \]
 \[= b b^{(p-1)(q-1)} b^{(p-1)(q-1)} \ldots b^{(p-1)(q-1)} \]
 \[= b 1 1 \ldots 1 \]
 \[= b \]

Note: we can also encrypt with d and encrypt with e.
- this will be useful shortly

How to break RSA?

Brute force: get B's public key
- for each possible b_i in plaintext, compute b_i^e
- for each observed b_i^e, we then know b_i
- moral: choose size of b_i "big enough"

[Diagram of RSA system]
man-in-the-middle: intercept keys, spoof identity:

1: get EB

2: return my EI

3: intercept b**EI
 compute b = DI (EI(b))
 send b**EB

A

you

b**EI

1: get EB

intruder

b**EB

2: return my EI

B

public: EB

private: DB