Current Research Topics

-Sigcomm Sessions
 -QoS
 -Network analysis & security
 -Multicast
 -giga/tera bit routers /fast classification
 -web performance
 -TCP
 -Diff Serv.
 -Routing
 -Network Topology

BEST-EFFORT VERSUS RESERVATIONS

A simple comparative Analysis

Lee Breslau & Scott Shenker

PROCEEDINGS OF ACM SIGCOMM’ 98
MOTIVATION
- Current Internet
 - single class of best-effort service
 - no guarantees about if/when packets are delivered
- Best-effort service not suitable for real-time applications
 - audio, video, soft real-time …
-Solution: Integrated Services
 - Applications reserve bandwidth
 - Network admits flows, enforces reservations...

KEY QUESTIONS
- Are reservations really necessary?
- Are we better off with an over-provisioned BE network?
* Arguments for reservations
 - Applications needing higher quality benefit
* Arguments against reservations
 - Network must operate at low utilization levels for low blocking probability
 - Low util => over-provisioned BE network is ok
 - Soft real-time applications are adaptive
GOAL OF NETWORK DESIGN

- A network should be designed to meet user needs
- Each user gets a utility u based on network bandwidth, delay, jitter
- Design the network to maximize total utility (Σui) => provide maximum satisfaction to users

\[\sum_{i} u_{i} \]

\[\Rightarrow \text{provide maximum satisfaction to users} \]

FIXED LOAD MODEL

Assume

- Single link of capacity C
- K identical flows, $b/w b = C/k$
- Utility fn $\pi(0)=0, \pi(\infty)=1$
- Maximize $v(k)=$

- Elastic applications $\sum_{i} \pi_{i} = k \cdot \pi(C/k)$
 - $v(k)$ increases as $k \rightarrow \infty$
 - \Rightarrow admit ∞ flows to maximize v
 - \Rightarrow use B/E network

- Rigid applications
 - $v(k)$ drops to 0 beyond a certain k
 - admit no more than k_{max} flows
 - \Rightarrow use reservation
VARIABLE LOAD MODEL
- Number of flows is taken from a probability distribution
 \[V = \sum_{k=1}^{\infty} P(k) \cdot k \cdot \pi(C/k) \]
- Reservations =>
 \[v = \sum_{k=1}^{\infty} P(k) \cdot k \cdot \pi(C/k) + \sum_{k=\text{max}+1}^{\infty} P(k) \cdot \text{max} \pi(C/\text{max}) \]
- Question: How much extra b/w do you need for BE network to match the performance of resv?
 - trade b/w for complexity
- P(k): - exponential
 - Poisson
 - Algebraic (heavy tailed)

Results
- BE v/s rigid v/s adaptive application
- Fixed model: substantial difference between BE & resv-capable network
 - adaptive applications change the picture
 - less compelling case for reservations
- Poisson: equal costs except at highest prices
- Exponential: small difference
- Algebraic: Resv is better IF complexity is small
 - B/W is expensive -?
 - B/W is cheap -?