CMPSCI 377: Operating Systems

Solutionto homevork 2: SchedulingandSynchronization

1. (10pts) Scheduling. Giventhefollowing mix of job, job lengths,andarrival times,assumetime slice of 15
andcomputethe completionandaverageresponsdime of eachjob for the FIFO, RR, and SRTF algorithms.
Pleasausethefollowing tableformatfor your solution.

Solution: Note,to getresponsdéimes,we mustsubtractstarttimesfrom finish times.

| | \ | SchedulingAlgorithms |
| Job| length| arrivaltime | FIFO | RT [RR | RT | SRTF | RT |

0] 75 0 75 | 75 [190] 190] 205 | 205
1 | 40 10 115 | 105| 110| 100| 80 | 70
2 | 25 10 140 [130| 85 | 75 | 40 | 30
3] 20 80 160 | 80 | 160| 80 | 100 | 20
4| 45 85 205 | 120| 205] 120 145 | 60

| Avg.RT | [102] [113] [77]

2. (10 pts) Scheduling. Given 3 jobs of length 10, 30, and 20 secondswith the samearrival time, schedule
themin job numberorder The 10 secjob has1 secof I/0 every othersecstartingat 1 second(assumehe
I/O happengust beforethe time slice). The context switchtime is 0O sec,andthereare 2 queues.The first
has1 sectime slice; the secondhasa 2 sectime slice. Using the Multilevel FeedbaclkQueuesAlgorithm,
fill in thefollowing tableswith the averageresponseexecution,andcompletiontimesof thesegjobs. Usethe
notationfrom class:make the superscripon thejob numberthe progressof the job, andthe subscripton the
job numberthe systemtime. For comparisonalsocomputethe job completionandaverageresponsdimes
for the RR algorithm.

Solution:

Completion
Time
Job length | RR | MLFB
1 10 28 | 28
2 30 60 | 60
3 20 50 | 51
[avg. RT | | 46 [46.33 |
Time
Queue| Slice || Job
1 1 11,28, 3,12, 13, 14, 13,5, 184
119’ 132’ 135’ 1%g
2 2 23,33, 285, 35, 205, 351, 24, 337, 230, 335
233, 338, 233, 315, 243, 344, 243, 313, 225, 321, 280

3. (5 pts)Scheduling. Whatis theeffectonthe RoundRobinAlgorithm of increasinghetime sliceto arbitrarily
largevalues.

Solution: Verylargetime slicesdecreaseRoundRobin’s ability to improve fairnessandmalkesit look more
andmorelike FIFO.

4. (10 pts) Synchronization: What adwvantagesioesthe test&setinstructionhave over enablinganddisabling
interrupts?n which circumstancemaywe still perferenablinganddisablinginterupts?

Solution: test&setis lesserrorpronebecausehe OS doesnot have to remembeto enableinterrupts,andit
doesnotlet theusercontrolinterruptsin ary way. Insidekernelcodeshortsequencewith interruptsdisabled
will bebettersinceit eliminatesbusywaiting.

5. (15 pts) Semaphores. Suppose two-way (north-south) fwo-laneroad containsa long one-lanetunnel. A
southboundor northboundcarcanonly usethetunnelif thereareno oncomingcarsin thetunnel. Because
of accidentsa signalingsystemhasbeeninstalledat the entranceso the tunnel. Whena car approacheghe
tunnel,a sensomaotifiesthe controllercomputerby calling afunctionar r i ve with thecar's travel direction
(north or south). Whena car exits the tunnel,the sensomotifiesthe controllercomputerby calling depar t
with the car’s travel direction. The traffic controller setsthe signallights: greenmeansgo, andred means
stop. Constructan algorithmfor controlling the lights suchthatthey operatecorrectlyevenwhenmostcars
approachhetunnelfrom onedirection.

Solution: The solutionbelav enforcesalternationif carsarearriving in both directionsregularly, andit lets
multiple carsgoingin the samedirectionin thetunnelat once. It only switchesdirections,if all carsareout
of thetunnelandthereare carswaiting to go in the oppositedirection. Every time it switchesdirections(say
from northto south),it lets all the waiting (southboundkarsgo at once. It checksthe north\Wait/southVeit
variablesto determineif a caris waiting, otherwiseif no caris waiting, the arriving car goes. The north-
Bound/southBoungariablegrackthenumberof carsin thetunnel.In this solution,we only signalto waiting
cars.As aresult,somecarsmay skip waiting altogethelif no carsarein thetunnelor no caris waiting from
the oppositedirection.

enum Direction {North, South};
cl ass Tunnel {

publi c:
Arrive(Direction dir); Depart(Direction dir);

private:
Semaphore nutex, goNorth, goSouth;
int northWit; /1l waiting to go north
int southWit; /1 waiting to go south
i nt nort hBound; /1 going north in Tunne
i nt sout hBound; /1 going south in Tunne

}

Tunnel : : Tunnel () {

mut ex. val ue = 1; // mutex for shared variables is avail able
goNorth.value = 0; // Cars do not wait if tunnel is enpty - Depart
goSout h.value = 0; // signals only when car(s) wait (n/sWait > 0)

northWait = 0O; /1 no one waiting
southWwait = 0 /1 no one waiting
nor t hBound ; /1 no one in tunne

sout hBound ;

0
0; // no one in tunne

}

Tunnel : : Arrive(Direction dir){
mut ex. Vi t () ;
/1 If no one in the tunnel, car goes
if ((northBound > 0) || (southBound > 0) {
if (dir == North) {
/1 if no one is waiting to go south, car goes north
if ((southwait > 0) || (southBound > 0)) {
/1 otherwi se, we count north waiters, and wait for a signa
nort h\i t ++;
mut ex. Si gnal () ; /'l release nutex before waiting!
goNorth. Vi t();
mut ex. Vi t () ;
northWait--;
}
el se {
/1 if no one is waiting to go north, car goes south
if ((northwait > 0) || (northBound > 0)) {
sout hWi t ++;
mut ex. Si gnal () ; /'l release nutex before waiting!
goSout h. it ();
mut ex. Vi t () ;
sout hWi t - -

}
}

/1 count how many cars are in the tunne
if (dir == North) northBound++;

el se sout hBound++;

mut ex. Si gnal () ;

}
/1 When a northbound car departs, we signal a southbound car if one is
/1 waiting only if no northbound cars are in the tunnel. Simlarly,

/1 when a southbound car departs. Note, in the Arrive routine above
/1 the car only waits

Tunnel : : Depart(Direction dir) {

mut ex. Vi t () ;
if (dir == North) {
nort hBound- - ;
if (southwait > 0) {
i f (northBound == 0)
for (int i =0; i++ i < southWiit)
goSout h. Si gnal ();

}
}
el se {

sout hBound- - ;

if (northvait > 0) {

i f (southBound == 0)
for (int i =0; i++ 1 < northWit)
goNort h. Signal ();

}

}

mut ex. Si gnal () ;

