Today: I/0 Systems

How does I/0 hardware influence the OS?
What I/O services does the OS provide?
How does the OS implement those services?

How can the OS improve the performance of I/O?

Ly Compu'fer Science CS377: Operating Systems Lecture 19, page 1

Architecture of I1/O Systems

* Key components

— System bus: allows the device to communicate with the CPU, typically
shared by multiple devices.

— A device port typically consisting of 4 registers:
* Status indicates a device busy, data ready, or error condition
* Control: command to perform
* Data-in: data being sent from the device to the CPU
* Data-out: data being sent from the CPU to the device

— Controller: receives commands from the system bus, translates them into
device actions, and reads/writes data onto the system bus.

— The device itself
» Traditional devices: disk drive, printer, keyboard, modem, mouse,
display

* Non-traditional devices: joystick, robot actuators, flying surfaces
of an airplane, fuel injection system of a car, ...

Compu'fer Science CS377: Operating Systems Lecture 19, page 2

PCIl Bus Structure

monitor

processor

|—| cache |

SCSI bus

OOO®

graphics controller b”i%i/{::;ir:rory SCSiI controller
PCI bus

IDE disk controller

expansion bus interface

@)
$

@)
@)

)
[oeone |

keyboard

|—|— expansion bus ——

paral

lel

port

serial
port

Computer Science

CS377: Operating Systems

Lecture 19, page 3

Kernel I/O Subsystem

kernel
o
©
B kernel I/0 subsystem
I8}
1]
SCSI keyboard mouse PCI bus floppy ATAPI
device device device L IO device device device
driver driver driver driver driver driver
SCSlI keyboard mouse PCl bus floppy ATAPI
device device device L device device device
controller controller controller controller controller controller
[}
§ JY A A JY A A JY
g v v \ 4 \ 4 v \ 4 \ 4
= ATAPI
SCsiI floppy-disk| | devices
devices keyboard mouse LN PCI bus - (disks,
tapes,
drives)

Computer Science

CS377: Operating Systems

Lecture 19, page 4

Device I/0O Port location on PCs

I/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

| Computer Science CS377: Operating Systems Lecture 19, page 5

/O Services Provided by OS

« Naming of files and devices. (On Unix, devices appear as files in
the /dev directory)

* Access control.
» Operations appropriate to the files and devices.
« Device allocation.

 Buffering, caching, and spooling to allow efficient communication
with devices.

 I/O scheduling.

 Error handling and failure recovery associated with devices
(command retries, for example).

* Device drivers to implement device-specific behaviors.

omputer Science CS377: Operating Systems Lecture 19, page 6

Communication using Polling

* CPU busy-waits until the status is idle.

* CPU sets the command register and data-out if it is an output operation.

* CPU sets status to command-ready => controller sets status to busy.

* Controller reads the command register and performs the command, placing a

value in data-in if it is an input command.

» If the operation succeeds, the controller changes the status to idle.

* CPU observes the change to idle and reads the data if it was an input operation.

* Good choice if data must be handled promptly, like for a modem or keyboard.

* What happens if the device is slow compared to the CPU?

CS377: Operating Systems

5 Computer Science

Lecture 19, page 7

Communication using Interrupts

 Rather than using busy waiting, the device can interrupt the CPU

when it completes an I/O operation.
* On an /O interrupt:

— Determine which device caused the interrupt.

— If the last command was an input operation, retrieve the data from the

device register.
— Start the next operation for that device.

W‘?_ Compufer‘ Science CS377: Operating Systems

device driver initiates 1/0

CPU executing checks for
interrupts between instructions
'

¥

I~

initiates 1/0

CPU receiving interrupt,
transfers control to
interrupt handler

3

IE

input ready, output
complete, or error

generates interrupt signal

interrupt handler
processes data,
retumns from interrupt

I

CPU resumes
processing of

Lecture 19, page 8

Intel X86 Event Vectors

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
17 alignment check
18 machine check
19D31 (Intel reserved, do not use)
32b255 maskable interrupts
Compu'fer Science CS377: Operating Systems Lecture 19, page 9

Direct Memory Access

» For devices that transfer large volumes of data at a time (like a
disk block), it is expensive to have the CPU retrieve these one
byte at a time.

* Solution: Direct memory access (DMA)
— Use a sophisticated DMA controller that can write directly to memory.
Instead of data-in/data-out registers, it has an address register.
— The CPU tells the DMA the locations of the source and destination of the
transfer.

— The DMA controller operates the bus and interrupts the CPU when the
entire transfer is complete, instead of when each byte is ready.
— The DMA controller and the CPU compete for the memory bus, slowing

down the CPU somewhat, but still providing better performance than if the
CPU had to do the transfer itself.

omputer Science CS377: Operating Systems Lecture 19, page 10

Application Programmer's View of 1/0 Devices

* The OS provides a high-level interface to devices, greatly simplifying the
programmer's job.
— Standard interfaces are provided for related devices.
— Device dependencies are encapsulated in device drivers.
— New devices can be supported by providing a new device driver.
* Device characteristics:
— Transfer unit: character or block
— Access method: sequential or random access
— Timing: synchronous or asynchronous.

* Most devices are asynchronous, while I/O system calls are synchronous => The
OS implements blocking 1/0O

— Sharable or dedicated

— Speed

— Operations: Input, output, or both

— Examples: keyboard (sequential, character), disk (block, random or sequential)

Compu'fer Science CS377: Operating Systems Lecture 19, page 11

Examples of I/0 Device types

aspect variation example
data-transfer mode character terminal
block disk
access method sequential modem
random CD-ROM
transfer schedule synchronous tape
asynchronous keyboard
sharing dedicated tape
sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
1/O direction read only CD-ROM
write only graphics controller
readPwrite disk

Computer Science

CS377: Operating Systems

Lecture 19, page 12

Block and Character devices

* Block devices include disk drives
— Commands include read, write, seek
— Raw I/O or file-system access
— Memory-mapped file access possible

* Character devices include keyboards, mice, serial ports
— Commands include get, put

— Libraries layered on top allow line editing

Compu-fer Science CS377: Operating Systems Lecture 19, page 13

/O Buffering

I/O devices typically contain a small on-board memory where they
can store data temporarily before transferring to/from the CPU.

e A disk buffer stores a block when it 1s read from the disk.

« [t 1s transferred over the bus by the DMA controller into a buffer
in physical memory.

* The DMA controller interrupts the CPU when the transfer is done.

POE Moo
& %,
2
b, |7
-y &
z) \K E
N

Compu'fer Science CS377: Operating Systems Lecture 19, page 14

Why buffer on the OS side?

» To cope with speed mismatches between device and CPU.

— Example: Compute the contents of a display in a buffer (slow) and then zap
the buffer to the screen (fast)

* To cope with devices that have different data transfer sizes.

— Example: ftp brings the file over the network one packet at a time. Stores
to disk happen one block at a time.

« To minimize the time a user process is blocked on a write.

— Writes => copy data to a kernel buffer and return control to the user
program. The write from the kernel bufter to the disk is done later.

Compu'fer Science CS377: Operating Systems Lecture 19, page 15

Caching

« Improve disk performance by reducing the number of disk
accesses.

— Idea: keep recently used disk blocks in main memory after the I/O call that brought
them into memory completes.

— Example: Read (diskAddress)
If (block in memory) return value from memory
Else ReadSector(diskAddress)
— Example: Write (diskAddress)
If (block in memory) update value in memory
Else Allocate space in memory, read block from disk, and update value in memory

What should happen when we write to a cache?

— write-through policy (write to all levels of memory containing the block, including to
disk). High reliability.

— write-back policy (write only to the fastest memory containing the block, write to
slower memories and disk sometime later). Faster.

5 Compu'fer Science CS377: Operating Systems Lecture 19, page 16

Putting the Pieces Together - a Typical Read
Call

User process requests a read from a device.
2. OS checks if data is in a buffer. If not,

a) OS tells the device driver to perform input.
b) Device driver tells the DMA controller what to do and blocks itself.

c) DMA controller transfers the data to the kernel buffer when it has all been
retrieved from the device.

d) DMA controller interrupts the CPU when the transfer is complete.

[E—

3. OS transfers the data to the user process and places the process
in the ready queue.

4. When the process gets the CPU, it begins execution following
the system call.

) Computer Science CS377: Operating Systems Lecture 19, page 17

Steps in DMA transfer

CuntiiC=0

P. when C =0, DMA
interrupts CPU to signal
transfer completion

1. device driver is told to
transfer disk data to
buffer at address X CPU
. DMA controller transfers 2. device driver tells disk
bytes to buffer X, controller to transfer C I
increasing memory bytes from disk to buffer cache
address and decreasing at address X

DMA/bus/interrupt
controller

)— CPU memory bus —

X
memory

buffer

1

I

PCI bus

IDE disk controller

DMA transfer

4. disk controller sends
each byte to DMA

controller
:disk: :disk:

3. disk controller initiates

omputer Science

CS377: Operating Systems

Lecture 19, page 18

/O request Lifecycle

E—
‘ request I/O |

I
system call

can already
satisfy request? yes

no

driver, block process if
appropriate

¥

process request, issue
commands to controller,

’ send request to device

user
process

kernel
I/O subsystem

kernel
1/O subsystem

1/O completed,
input data available, or
output completed

return from system call

transfer data
(if appropriate) to process,
return completion
or error code

F 3

determine which I/O
completed, indicate state
change to I/O subsystem

receive mterrupl store
data in device-driver buffer
if input, signal to unblock
deVIce driver

mlerrupt

’ monitor device,

I/O completed,
generate interrupt

L device
configure controller to driver
block until interrupted
. interrupt

device controller commands handler
v
device
controller
interrupt when I/O
completed
time

Computer Science

CS377: Operating Systems

Summary

« I/0O is expensive for several reasons:

Slow devices and slow communication links

Contention from multiple processes.

Lecture 19, page 19

I/O i1s typically supported via system calls and interrupt handling, which are

slow.

» Approaches to improving performance:
— Reduce data copying by caching in memory

— Reduce interrupt frequency by using large data transfers

— Offload computation from the main CPU by using DMA controllers.

— Increase the number of devices to reduce contention for a single device and

thereby improve CPU util

1zation.

— Increase physical memory to reduce amount of time paging and thereby

improve CPU utilization.

Computer Science

CS377: Operating Systems

Lecture 19, page 20

