Last Class: Memory management Multiprogramming and Thrashing

* Page replacement algorithms - make paging work well.

CPU utilization

— Random, FIFO, MIN, LRU
— Approximations to LRU: Second chance

— Multiprogramming considerations
degree of multiprogramming
¢ Thrashing: the memory is over-committed and pages are

continuously tossed out while they are still in use
— memory access times approach disk access times since many memory
references cause page faults
— Results in a serious and very noticeable loss of performance.
* What can we do in a multiprogrammed environment to limit
thrashing?

omputer Science CS377: Operating Systems Lecture 16, page 1 Computer‘ Science CS377: Operating Systems Lecture 15, page 2

Replacement Policies for Multiprogramming Replacement Policies for Multiprogramming

* Proportional allocation: allocate more page frames to large * Per-process replacement: Each process has its own pool of

processes. Pages.) .
~ alloc = /S * m » Run only groups of processes that fit in memory, and kick out the
rest.

* Global replacement: put all pages from all processes in one pool
so that the physical memory associated with a process can grow
— Advantages: Flexible, adjusts to divergent process needs

* How do we figure out how many pages a process needs, i.e., its
working set size?
— Informally, the working set is the set of pages the process is using right now

— More formally, it is the set of all pages that a process referenced in the past T
seconds

* How does the OS pick T?

— 1 page fault = 10msec

— Disadvantages: Thrashing might become even more likely (Why?)

— 10msec = 2 million instructions
=> T needs to be a whole lot bigger than 2 million instructions.

— What happens if T is too small? too big?

Computer Science CS377: Operating Systems Lecture 15, page 4

Computer Science CS377: Operating Systems Lecture 15, page 3

Working Set Determination

page reference table
...2615777751623412344434344413234443444...

WS(t)) = {1,25,6.7) WS(t,) = {34}

CS377: Operating Systems Lecture 15, page 5

Per-process Replacement

Working sets are expensive to compute => track page fault
frequency of each process instead
— If the page fault frequency > some threshold, give it more page frames.

— If the page fault frequency < a second threshold, take away some page
frames

Goal: the system-wide mean time between page faults should be
equal to the time it takes to handle a page fault.

— May need to suspend a process until overall memory demands decrease.

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number|
of frames

number of frames

CS377: Operating Systems Lecture 15, page 6

Page-fault Frequency Scheme Kernel Memory Allocators

* Advantages: Thrashing is less likely as process only
competes with itself. More consistent performance * Buddy allocator

independent of system load. _ Allocate memory in size of 2°n

» Disadvantages: The OS has to figure out how many — Can lead to internal fragmentation
pages to give each process and if the working set size
grows dynamically adjust its allocation. « Slab allocator

— Group objects of same size in a “slab”

— Object cache points to one or more slabs

— Separate cache for each kernel data structure (e.g., PCB)
— Used in solaris, linux

i Computer Science CS377: Operating Systems Lecture 15, page 7] Computer Science CS377: Operating Systems Lecture 16, page 8

Page Sizes Today: File System Functionality

* Reasons for small pages:

— More effective memory use. Remember the high-level view of the OS as a translator from the
— Higher degree of multiprogramming possible. user abstraction to the hardware reality.

* Reasons for large pages:
— Smaller page tables

— Amortizes disk overheads over a larger page User
Abstraction

Hardware
Resource

— Fewer page faults (for processes that exhibit locality of references)
» Page sizes are growing because:

Processes/Threads

CPU

— Physical memory is cheap. As a result, page tables could get huge with
small pages. Also, internal fragmentation is less of a concern with abundant

Address Space

<=0S=> Memory

memory. Files

— CPU speed is increasing faster than disk speed. As a result, page faults

Disk

result in a larger slow down than they used to. Reducing the number of page
faults is critical to performance.

Computer Science CS377: Operating Systems Lecture 15, page 9

CS377: Operating Systems

Lecture 16, page 10

File System Abstraction User Requirements on Data

* Persistence: data stays around between jobs, power cycles,

Applications Daemons Servers Shell crashes
Programmer .
Interface » Speed: can get to data quickly
Open() Close() Read() Write() .
Link() Rename() * Size: can store lots of data
Device N . .
Indepedent * Sharing/Protection: users can share data where appropriate or
nteriace . . .
Sectors Tracks keep it private when appropriate
Seek() ReadBlock() WriteBlock() . . .
Device * Ease of Use: user can easily find, examine, modify, etc. data
Interface
Hardware
Disk

Computep Science CS377: Operating Systems Lecture 16, page 11 5 omputer Science CS377: Operating Systems Lecture 16, page 12

Hardware/OS Features Files

* Hardware provides: * File: Logical unit of storage on a storage device
— Persistence: Disks provide non-volatile memory — Formally, named collection of related information recorded on secondary
— Speed: Speed gained through random access storage
— Size: Disks keep getting bigger (typical disk on a PC=500GB - 1TB) — Example: reader.cc, a.out
« OS provides: * Files can contain programs (source, binary) or data
— Persistence: redundancy allows recovery from some additional failures Files can be structured or unstructured
— Sharing/Protection: Unix provides read, write, execute privileges for files — Unix implements files as a series of bytes (unstructured)
— Ease of Use — IBM mainframes implements files as a series of records or objects
+ Associating names with chunks of data (files) (structured)
« Organize large collections of files into directories « File attributes: name, type, location, size, protection, creation time

* Transparent mapping of the user's concept of files and directories onto
locations on disks

* Search facility in file systems (SpotLight in Mac OS X)

omputer Science CS377: Operating Systems Lecture 16, page 13 omputer Science CS377: Operating Systems Lecture 16, page 14

User Interface to the File System OS File Data Structures

Common file operations (system calls) 1. Open file table - shared by all processes with an open file.
Data operations: — open count

Create() Open() Read() — file attributes, including ownership, protection information, access

. times, ...
Delete() Close() Write() — location(s) of file on disk
Seek() — pointers to location(s) of file in memory

Naming operations: Attributes (owner, protection,...): 2. Per-process file table - for each file,

HardLink() SetAttribute() — pointer to entry in the open file table

SoftLink() GetAttribute() — current position in file (offset)

— mode in which the process will access the file (r, w, rw)

Rename() — pointers to file buffer

Computer Science CS377: Operating Systems Lecture 16, page 15 5 Computer' Science CS377: Operating Systems Lecture 16, page 16

File Operations: Creating a File File Operations: Deleting a File

* Create(name) * Delete(name)
— Allocate disk space (check disk quotas, permissions, etc.)
— Create a file descriptor for the file including name, location on disk, and all — Find the directory containing the file.
file attributes. — Free the disk blocks used by the file.

— Add the file descriptor to the directory that contains the file.
— Optional file attribute: file type (Word file, executable, etc.)
+ Advantages: better error detection, specialized default operations

(double-clicking on a file knows what application to start), enables
storage layout optimizations

Remove the file descriptor from the directory.

— Refcounts and hardlinks?

* Disadvantages: makes the file system and OS more complicated, less
flexible for user.

+ Unix opts for simplicity (no file types), Macintosh/Windows opt for
user-friendliness

omputer Science CS377: Operating Systems Lecture 16, page 17 Computer Science CS377: Operating Systems Lecture 16, page 18

File Operations: Open and Close OS File Operations: Reading a File

* fileld = Open(name, mode) * Read(fileID, from, size, bufAddress) - random access
— Check if the file is already open by another process. If not, — OS reads “size” bytes from file position “from” into “bufAddress”
* Find the file. for (i = from; i < from + size; i++)
» Copy the file descriptor into the system-wide open file table. bufAddress|[i - from] = file[i];
— Check the protection of the file against the requested mode. If not ok, abort
— Increment the open count. * Read(fileID, size, bufAddress) - sequential access
— Create an entry in the process's file table pointing to the entry in the system- — OS reads “size” bytes from current file position, fp, into “bufAddress” and
wide file table. Initialize the current file pointer to the start of the file. increments current file position by size
* Close(fileld) for (1= 0; i <size; i++)
— Remove the entry for the file in the process's file table. bufAddress[i] = file[fp + i];
— Decrement the open count in the system-wide file table. fp += size;

— Ifthe open count == 0, remove the entry in the system-wide file table.

] omputer- Science CS377: Operating Systems Lecture 16, page 19 Computer Science CS377: Operating Systems Lecture 16, page 20

OS File Operations File Access Methods

* Write is similar to reads, but copies from the buffer to the file. + Common file access patterns from the programmer's perspective
* Seek just updates fp. — Sequential: data processed in order, a byte or record at a time.

 Memory mapping a file * Most programs use this method

— Map a part of the portion virtual address space to a file * Example: compiler reading a source file.

— Read/write to that portion of memory \implies OS reads/writes from ~ Keyed: address a block based on a key value.
corresponding location in the file * Example: database search, hash table, dictionary

— File accesses are greatly simplified (no read/write call are necessary)

* Common file access patterns from the OS perspective:

— Sequential: keep a pointer to the next byte in the file. Update the pointer on
each read/write.

— Random: address any block in the file directly given its offset within the
file.

: omputer Science CS377: Operating Systems Lecture 16, page 21 Computer Science CS377: Operating Systems Lecture 16, page 22

Naming and Directories

* Need a method of getting back to files that are left on disk.
* OS uses numbers for each files

Users prefer textual names to refer to files.
Directory: OS data structure to map names to file descriptors

* Naming strategies

Single-Level Directory: One name space for the entire disk, every name
is unique.

1. Use a special area of disk to hold the directory.

2. Directory contains <name, index> pairs.

3. If one user uses a name, no one else can.

4. Some early computers used this strategy. Early personal computers
also used this strategy because their disks were very small.

Two Level Directory: each user has a separate directory, but all of each
user's files must still have unique names

. omputer Science CS377: Operating Systems Lecture 16, page 23

Naming Strategies (continued)

Multilevel Directories - tree structured name space (Unix, and all
other modern operating systems).

1. Store directories on disk, just like files except the file descriptor for
directories has a special flag bit.

2. User programs read directories just like any other file, but only special
system calls can write directories.

3. Each directory contains <name, fileDesc> pairs in no particular order.
The file referred to by a name may be another directory.

4. There is one special root directory. Example: How do we look up name: /
ust/local/bin/netscape

Computer Science CS377: Operating Systems Lecture 16, page 24

Referential naming Referential Naming

+ Hard links (Unix: /n command)

— A hard link adds a second connection to a file * Soft links (Unix: /n -s command)
— Example: creating a hard link from B to A — A soft link only makes a symbolic pointer from one file to another.
Initially: A — file #100 — Example: creating a soft link from B to A
Initially: A — file #100
After “In AB”: A — file #100
B — file #100
After “In AB”: A — file #100

— OS maintains reference counts, so it will only delete a file after the last link

to it has been deleted. B—A
— Problem: user can create circular links with directories and then the OS can — removing B does not affect A
never delete the disk space. — removing A leaves the name B in the directory, but its contents no longer
— Solution: No hard links to directories A Bl - daa exists
C- dam — Problem: circular links can cause infinite loops (e.g., trying to list all the
(2T E - files in a directory and its subdirectories)
7‘ — Solution: limit number of links traversed.
Computer Science CS377: Operating Systems Lecture 16, page 25 5 Computer Science CS377: Operating Systems Lecture 16, page 26

Directory Operations Protection

* Search for a file: locate an entry for a file * The OS must allow users to control sharing of their files =>
« Create a file: add a directory listing control access to files
« Delete a file: remove directory listing * Grant or deny access to file operations depending on protection

 List a directory: list all files (/s command in UNIX) information

* Access lists and groups (Windows NT)

* Rename a file . .
— Keep an access list for each file with user name and type of access

* Traverse the file system . . .
y — Lists can become large and tedious to maintain

* Access control bits (UNIX)
— Three categories of users (owner, group, world)
— Three types of access privileges (read, write, execute)
— Maintain a bit for each combination (111101000 = rwxr-x---)

5 Computer Science CS377: Operating Systems Lecture 16, page 27) Computer Science CS377: Operating Systems Lecture 16, page 28

