
Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Last Class: Processes

• A process is the unit of execution.
• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and memory management
information, etc

• A process is either New, Ready, Waiting, Running, or Terminated.
• On a uniprocessor, there is at most one running process at a time.
• The program currently executing on the CPU is changed by

performing a context switch
• Processes communicate either with message passing or shared

memory

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Today: Scheduling Algorithms

• Goals for scheduling

• FCFS & Round Robin

• SJF

• Multilevel Feedback Queues

• Lottery Scheduling

2

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Scheduling Processes
• Multiprogramming: running more than one process

at a time enables the OS to increase system utilization
and throughput by overlapping I/O and CPU activities.

• Process Execution State

• All of the processes that the OS is currently managing
reside in one and only one of these state queues.

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Scheduling Processes
• Long Term Scheduling: How does the OS determine the degree

of multiprogramming, i.e., the number of jobs executing at once
in the primary memory?

• Short Term Scheduling: How does (or should) the OS select a
process from the ready queue to execute?

– Policy Goals
– Policy Options
– Implementation considerations

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Short Term Scheduling
• The kernel runs the scheduler at least when

1. a process switches from running to waiting,
2. an interrupt occurs, or
3. a process is created or terminated.

• Non-preemptive system: the scheduler must wait for
one of these events

• Preemptive system: the scheduler can interrupt a
running process

5

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Criteria for Comparing Scheduling Algorithms

• CPU Utilization The percentage of time that the CPU is
busy.

• Throughput The number of processes completing in a unit
of time.

• Turnaround time The length of time it takes to run a
process from initialization to termination, including all the
waiting time.

• Waiting time The total amount of time that a process is in
the ready queue.

• Response time The time between when a process is ready to
run and its next I/O request.

6

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Scheduling Policies
Ideally, choose a CPU scheduler that optimizes all criteria

simultaneously (utilization, throughput,..), but this is not
generally possible

Instead, choose a scheduling algorithm based on its ability to satisfy
a policy

• Minimize average response time - provide output to the user as quickly as
possible and process their input as soon as it is received.

• Minimize variance of response time - in interactive systems, predictability may
be more important than a low average with a high variance.

• Maximize throughput - two components
– minimize overhead (OS overhead, context switching)
– efficient use of system resources (CPU, I/O devices)

• Minimize waiting time - give each process the same amount of time on the
processor. This might actually increase average response time.

7

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Scheduling Policies
Simplifying Assumptions

• One process per user
• One thread per process
• Processes are independent
• Singe processor, single core

Researchers developed these algorithms in the 70's when these
assumptions were more realistic, and it is still an open problem
how to relax these assumptions.

8

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Scheduling Algorithms: A Snapshot

FCFS: First Come, First Served

Round Robin: Use a time slice and preemption to alternate jobs.

SJF: Shortest Job First

Multilevel Feedback Queues: Round robin on each priority queue.

Lottery Scheduling: Jobs get tickets and scheduler randomly
picks winning ticket.

9

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Scheduling Policies

FCFS: First-Come-First-Served (or FIFO: First-In-First-Out)

• The scheduler executes jobs to completion in arrival order.
• In early FCFS schedulers, the job did not relinquish the CPU even

when it was doing I/O.
• We will assume a FCFS scheduler that runs when processes are

blocked on I/O, but that is non-preemptive, i.e., the job keeps the
CPU until it blocks (say on an I/O device).

10

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

FCFS Scheduling Policy: Example

• If processes arrive 1 time unit apart, what is the average
wait time in these three cases?

11

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

FCFS: Advantages and Disadvantages

Advantage: simple

Disadvantages:
• average wait time is highly variable as short jobs may wait behind

long jobs.

• may lead to poor overlap of I/O and CPU since CPU-bound
processes will force I/O bound processes to wait for the CPU,
leaving the I/O devices idle

12

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Round Robin Scheduling
• Variants of round robin are used in most time sharing systems
• Add a timer and use a preemptive policy.
• After each time slice, move the running thread to the back of the queue.
• Selecting a time slice:

– Too large - waiting time suffers, degenerates to FCFS if processes are never
preempted.

– Too small - throughput suffers because too much time is spent context switching.
� => Balance these tradeoffs by selecting a time slice where context switching is

roughly 1% of the time slice.
• Today: typical time slice= 10-100 ms, context switch time= 0.1-1ms
• Advantage: It's fair; each job gets an equal shot at the CPU.
• Disadvantage: Average waiting time can be bad.

13

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 100

2 100

3 100

4 100

5 100

Average

14

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 100 100 496 0 396

2 100 200 497 100 397

3 100 300 498 200 398

4 100 400 499 300 399

5 100 500 500 400 400

Average 300 498 200 398

15

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 50

2 40

3 30

4 20

5 10

Average

16

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Job Length

Completion Time Wait Time

FCFS Round Robin FCFS Round Robin

1 50 50 150 0 100

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 110 80 80

17

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

SJF/SRTF: Shortest Job First
• Schedule the job that has the least (expected) amount of work

(CPU time) to do until its next I/O request or termination.
• Advantages:

– Provably optimal with respect to minimizing the average waiting time
– Works for preemptive and non-preemptive schedulers
– Preemptive SJF is called SRTF - shortest remaining time first

� => I/O bound jobs get priority over CPU bound jobs

• Disadvantages:
– Impossible to predict the amount of CPU time a job has left
– Long running CPU bound jobs can starve

18

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Lengt
h

Completion Time Wait Time

FCFS RR SJF FCFS RR SJF

1 50

2 40

3 30

4 20

5 10

Average

19

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Lengt
h

Completion Time Wait Time

FCFS RR SJF FCFS RR SJF

1 50 50 150 150 0 100 100

2 40 90 140 100 50 100 60

3 30 120 120 60 90 90 30

4 20 140 90 30 120 70 10

5 10 150 50 10 140 40 0

Average 110 110 70 80 80 40

20

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues (MLFQ)
• Multilevel feedback queues use past behavior to predict the future

and assign job priorities
� => overcome the prediction problem in SJF
• If a process is I/O bound in the past, it is also likely to be I/O

bound in the future (programs turn out not to be random.)
• To exploit this behavior, the scheduler can favor jobs that have

used the least amount of CPU time, thus approximating SJF.
• This policy is adaptive because it relies on past behavior and

changes in behavior result in changes to scheduling decisions.

21

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Approximating SJF: Multilevel Feedback
Queues

• Multiple queues with different priorities.
• Use Round Robin scheduling at each priority level, running the

jobs in highest priority queue first.
• Once those finish, run jobs at the next highest priority queue, etc.

(Can lead to starvation.)
• Round robin time slice increases exponentially at lower priorities.

22

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Adjusting Priorities in MLFQ
• Job starts in highest priority queue.

• If job's time slices expires, drop its priority one level.

• If job's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.

⇒CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

23

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1

•3 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time

 Slice
Job

1 1

2 2

3 4

24

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1

•5 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 53 30 33

3 10 30 32 20 22

Average 46 2/3 48 1/3 26
2/3

28 1/3

Queue Time
Slice

Job

1 1 111 , 221 , 331

2 2 153 , 273 , 393

3 4 1137 , 2177 , 3217

12511 , 22911 , 33210 ...

25

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 2 sec,
context switch time of 0 sec, 2 queues.

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time

Slice
Job

1 2

2 4

26

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

Job Length

Completion
Time

Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 50 30 30

3 10 30 18 20 8

Average 46 2/3 45 26 2/3 25 1/3

27

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Improving Fairness
Since SJF is optimal, but unfair, any increase in fairness by giving

long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.

Possible solutions:
• Give each queue a fraction of the CPU time. This solution is only

fair if there is an even distribution of jobs among queues.
• Adjust the priority of jobs as they do not get serviced (Unix

originally did this.)
– This ad hoc solution avoids starvation but average waiting time

suffers when the system is overloaded because all the jobs end
up with a high priority,.

28

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Lottery Scheduling
• Give every job some number of lottery tickets.
• On each time slice, randomly pick a winning ticket.
• On average, CPU time is proportional to the number of tickets

given to each job.
• Assign tickets by giving the most to short running jobs, and fewer

to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

• Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

29

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Lottery Scheduling: Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% 9%
0/2
2/0
10/1
1/10

30

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Lottery Scheduling Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)
10/1 10% (10/101) < 1% (1/101)
1/10 50% (10/20) 5% (1/20)

31

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Summary of Scheduling Algorithms:
• FCFS: Not fair, and average waiting time is poor.
• Round Robin: Fair, but average waiting time is poor.
• SJF: Not fair, but average waiting time is minimized assuming we

can accurately predict the length of the next CPU burst. Starvation
is possible.

• Multilevel Queuing: An implementation (approximation) of SJF.
• Lottery Scheduling: Fairer with a low average waiting time, but

less predictable.
⇒Our modeling assumed that context switches took no time, which

is unrealistic.

32

