
Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues (MLFQ)
• Multilevel feedback queues use past behavior to predict the future

and assign job priorities
� => overcome the prediction problem in SJF
• If a process is I/O bound in the past, it is also likely to be I/O

bound in the future (programs turn out not to be random.)
• To exploit this behavior, the scheduler can favor jobs that have

used the least amount of CPU time, thus approximating SJF.
• This policy is adaptive because it relies on past behavior and

changes in behavior result in changes to scheduling decisions.

21

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Approximating SJF: Multilevel Feedback
Queues

• Multiple queues with different priorities.
• Use Round Robin scheduling at each priority level, running the

jobs in highest priority queue first.
• Once those finish, run jobs at the next highest priority queue, etc.

(Can lead to starvation.)
• Round robin time slice increases exponentially at lower priorities.

22

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Adjusting Priorities in MLFQ
• Job starts in highest priority queue.
!

• If job's time slices expires, drop its priority one level.
!

• If job's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.
!

⇒CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

23

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1

•3 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time

 Slice
Job

1 1

2 2

3 4

24

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1

•5 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 53 30 33

3 10 30 32 20 22

Average 46 2/3 48 1/3 26
2/3

28 1/3

Queue Time
Slice

Job

1 1 11

2 2 15

3 4 113

125

25

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 2 sec,
context switch time of 0 sec, 2 queues.

Job Length

Completion Time Wait Time

RR MLFQ RR MLFQ

1 30

2 20

3 10

Average
Queue Time

Slice
Job

1 2

2 4

26

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

Job Length

Completion
Time

Wait Time

RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 50 30 30

3 10 30 18 20 8

Average 46 2/3 45 26 2/3 25 1/3

27

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Improving Fairness
Since SJF is optimal, but unfair, any increase in fairness by giving

long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.
!

Possible solutions:
• Give each queue a fraction of the CPU time. This solution is only

fair if there is an even distribution of jobs among queues.
• Adjust the priority of jobs as they do not get serviced (Unix

originally did this.)
– This ad hoc solution avoids starvation but average waiting time

suffers when the system is overloaded because all the jobs end
up with a high priority,.

28

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Lottery Scheduling
• Give every job some number of lottery tickets.
• On each time slice, randomly pick a winning ticket.
• On average, CPU time is proportional to the number of tickets

given to each job.
• Assign tickets by giving the most to short running jobs, and fewer

to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

• Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

29

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Lottery Scheduling: Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% 9%
0/2
2/0
10/1
1/10

30

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Lottery Scheduling Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)
10/1 10% (10/101) < 1% (1/101)
1/10 50% (10/20) 5% (1/20)

31

Computer Science Lecture 5, page Computer Science CS377: Operating Systems

Summary of Scheduling Algorithms:
• FCFS: Not fair, and average waiting time is poor.
• Round Robin: Fair, but average waiting time is poor.
• SJF: Not fair, but average waiting time is minimized assuming we

can accurately predict the length of the next CPU burst. Starvation
is possible.

• Multilevel Queuing: An implementation (approximation) of SJF.
• Lottery Scheduling: Fairer with a low average waiting time, but

less predictable.
⇒Our modeling assumed that context switches took no time, which

is unrealistic.

32

