Multilevel Feedback Queues (MLFQ)

* Multilevel feedback queues use past behavior to predict the future
and assign job priorities
=> overcome the prediction problem in SJF

« If aprocess is I/O bound in the past, it is also likely to be I/O
bound in the future (programs turn out not to be random.)

* To exploit this behavior, the scheduler can favor jobs that have
used the least amount of CPU time, thus approximating SJF.

 This policy is adaptive because it relies on past behavior and
changes in behavior result in changes to scheduling decisions.

§ COI’\'\pUTel“ Science CS377: Operating Systems Lecture 5, page21

Approximating SJF: Multilevel Feedback
Queues

* Multiple queues with different priorities.

* Use Round Robin scheduling at each priority level, running the
jobs in highest priority queue first.

* Once those finish, run jobs at the next highest priority queue, etc.
(Can lead to starvation.)

* Round robin time slice increases exponentially at lower priorities.

Priority Time Slice
IG[F[A] 1 !
[E] 2 2
DB 3 4
[c] 4 8

g L\ ,5 Compu‘rer' Science CS377: Operating Systems Lecture 5, page22

Adjusting Priorities in MLFQ

 Job starts in highest priority queue.
» Ifjob's time slices expires, drop its priority one level.

« Ifjob's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.

= CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

Z 5 Compu‘rer' Science CS377: Operating Systems Lecture 5, page23

Multilevel Feedback Queues:Example 1

3 jObS, of length 30’ 20, and 10 Completion Time Wait Time
seconds each, initial time slice 1 Job | Length | RR | MLFQ RR | MLFQ
second, context switch time of 0 1 30
seconds, all CPU bound (no I/O), 3 —
queues
3 10
. Average
Queue | Time Job
Slice
1 1
2 2
3 4

5 Compu‘rer' Science CS377: Operating Systems Lecture 5, page24

Multilevel Feedback Queues:Example 1

5 jObS, of length 30’ 20, and 10 Completion Time Wait Time
seconds each, initial time slice 1 Job | Length |RR | MLFQ | RR | MLFQ
second, context switch time of 0 1 30 60 60 30 30
seconds, all CPU bound (no I/O), 3 2|20 50 53 30 |33
queues 3 10 30 32 20 2
Average 462/3 | 48 1/3 26 28173

Queue | Time Job
Slice
1 1
1
2 2
Is
3 4
|§E
125

Compu‘rer Science CS377: Operating Systems Lecture 5, page25

Multilevel Feedback Queues:Example 2

3 jObS, of length 30’ 20, and 10 Completion Time Wait Time
seconds, the 10 sec job has 1 sec of I/0 Job | Length | RR | MLFQ RR | MLFQ
every other sec, initial time slice 2 sec, |30
context switch time of 0 sec, 2 queues. 15
0
3 (10
- Average
Queue | Time Job
Slice
1 2
2 4

Compu‘rer Science CS377: Operating Systems Lecture 5, page26

Multilevel Feedback Queues:Example 2

*3 jobs, of length 30, 20, and 10 Completion Wait Time
seconds, the 10 sec job has 1 sec of I/0
NI) Job | Length |RR | MLFQ |RR MLFQ
every other sec, initial time slice 1 sec,
. . 1|30 60 60 30 30
context switch time of 0 sec, 2 queues.
2 |20 50 50 30 30
3|10 30 18 20 8
Average 462/3 | 45 262/3 | 251/3
Time
Queue | Slice Job
T 51 oI
1 1 .28
36.3.35. 375,318 _
2 2 13,23, 171,254, 11+, 205,
1%0 299, 1;2i Qi,é 1%§ 2%§
133,234, 136, 238, 1105 242
Compu‘rer Science CS377: Operating Systems Lecture 5, page27

Improving Fairness

Since SJF is optimal, but unfair, any increase in fairness by giving
long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.

Possible solutions:

* @Give each queue a fraction of the CPU time. This solution is only
fair if there is an even distribution of jobs among queues.

» Adjust the priority of jobs as they do not get serviced (Unix
originally did this.)
— This ad hoc solution avoids starvation but average waiting time

suffers when the system is overloaded because all the jobs end
up with a high priority,,.

Compu‘rer' Science CS377: Operating Systems Lecture 5, page28

Lottery Scheduling

* @Give every job some number of lottery tickets.

On each time slice, randomly pick a winning ticket.

On average, CPU time is proportional to the number of tickets
given to each job.

Assign tickets by giving the most to short running jobs, and fewer
to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

& N\ 3 Computer Science CS377: Operating Systems Lecture 5, page29

Lottery Scheduling: Example

Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/ | % of CPU each | % of CPU each
long jobs | short job gets long job gets

1/1 91% 9%
0/2
2/0
10/1
1/10

A E Compu‘rer Science CS377: Operating Systems Lecture 5, page30

Lottery Scheduling Example

Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/ | % of CPU each | % of CPU each

long jobs | short job gets long job gets
1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)
10/1 10% (10/101) | <1% (1/101)
1/10 50% (10/20) 5% (1/20)

Computer Science CS377: Operating Systems Lecture 5, page31

Summary of Scheduling Algorithms:

* FCFS: Not fair, and average waiting time is poor.
* Round Robin: Fair, but average waiting time is poor.

* SJF: Not fair, but average waiting time is minimized assuming we
can accurately predict the length of the next CPU burst. Starvation
is possible.

* Multilevel Queuing: An implementation (approximation) of SJF.

* Lottery Scheduling: Fairer with a low average waiting time, but
less predictable.

= Our modeling assumed that context switches took no time, which
is unrealistic.

§ Computer Science CS377: Operating Systems Lecture 5, page32

