Last Class: OS and Computer Architecture

disks

e 046

mouse keyboard printer monitor

-
/|

disk

CPU
controller

| USB controller ‘ HERIES
adapter

L

System bus
Network
memory card

« CPU, memory, I/O devices, network card, system bus

g Computer Science

CS377: Operating Systems

Lecture 3, page 1

Last Class: OS and Computer Architecture

OS Service

Hardware Support

Protection Kernel/user mode, protected
instructions, base/limit registers
Interrupts Interrupt vectors

System calls

Trap instructions and trap vectors

/0 Interrupts and memory mapping
Scheduling, error recovery, Timer

accounting

Syncronization Atomic instructions

Virtual memory

Translation look-aside buffers

Computer Science

CS377: Operating Systems

Lecture 3, page 2

Today: OS Structures & Services

* More on System Calls
* Introduce the organization and components in an OS.
* Four example OS organizations

— Monolithic kernel

— Layered architecture

— Microkernel
— Modular

‘ Computer Science CS377: Operating Systems Lecture 3, page 3

Class Exercise

 10s 7 and iphone 5S
— “iphone 58S first 64-bit smartphone, i10s7 64-bit OS”

 1phone has M7 co-processor in addition to main A7
processor

— Oftloads work (primarily sensor data processing) from main
CPU to co-processor

* Critique these design decisions. Benefits?

5 Computer Science Lecture 3, page 4

System Calls

* Programming interface to the services provided by the OS
* Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

* Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)

* Why use APIs rather than system calls?

5 CompuTer' Science CS377: Operating Systems Lecture 3, page 5

Standard C Library Example

* C program invoking printf() library call, which
calls write() system call

#include <stdio.h>
int main ()

— printf ("Greetings");

return O;

}

user
node

standard C library —

ernel

node
<vrite () >
system call

2\ 5 Computer Science CS377: Operating Systems Lecture 3, page 6

Example of Standard API

Consider the ReadFile() function in the
Win32 API—a function for reading from a file

return value

'

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,

function name LPOVERLAPPED ovl) ;

A description of the parameters passed to ReadFile()
— HANDLE file—the file to be read
— LPVOID buffer—a buffer where the data will be read into and written from
— DWORD bytesToRead—the number of bytes to be read into the buffer
— LPDWORD bytesRead—the number of bytes read during the last read
— LPOVERLAPPED ovl—indicates if overlapped /O is being used

E Computer Science CS377: Operating Systems Lecture 3, page 7

System Call Implementation

Typically, a number associated with each system call
— System-call interface maintains a table indexed according to these numbers

The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values

The caller need know nothing about how the system call is
implemented
— Just needs to obey API and understand what OS will do as a result call
— Most details of OS interface hidden from programmer by API

* Managed by run-time support library (set of functions built into libraries
included with compiler)

) 5 Compu‘rer Science CS377: Operating Systems Lecture 3, page 8

APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
L | open ()
2 Implementation
i » of open ()
. system call
. L]
* L
L]
return
5 CompuTer' Science CS377: Operating Systems Lecture 3, page 9

System Call Parameter Passing

« Often, more information is required than simply identity of
desired system call
— Exact type and amount of information vary according to OS and call

» Three general methods used to pass parameters to the OS
— Simplest: pass the parameters in registers
* In some cases, may be more parameters than registers
— Parameters stored in a block, or table, in memory, and address of block
passed as a parameter in a register
* This approach taken by Linux and Solaris
— Parameters placed, or pushed, onto the stack by the program and popped off
the stack by the operating system
— Block and stack methods do not limit the number or length of parameters
being passed

J 5 CompuTer' Science CS377: Operating Systems Lecture 3, page10

Examples of Windows and Unix System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode() 1oetl ()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe()
CreateFileMapping() shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()
CompuTer' Science CS377: Operating Systems Lecture 3, pagell

One Basic OS Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling
g ! handling swapping block /O page replacement
2 character 1/0 system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

* The kernel 1s the protected part of the OS that runs in
kernel mode, protecting the critical OS data structures
and device registers from user programs.

« Debate about what functionality goes into the kernel
(above figure: UNIX) - “monolithic kernels”

CompuTer' Science CS377: Operating Systems Lecture 3, page12

Mac OS X Architecture

APl

BSD Classic Java

Application services

Couare) openci Y rrimcere) -]

Carbon Core services

Core Core foundation non-GUI API...

Core OS ("Darwin")
System utilities

Kernel ("xnu")

File systems

BSD
acr

Hardware

_J CompuTer' Science Lecture 3, pagel3

Windows 8 Architecture

Windows 8 Platform and Tools
Metro style Apps Desktop Apps
HTML/ CSS

JavaScript ytme ¢ o
Javascript C++ VB

Internet
Explorer

Windows Kernel Services

) CompuTer' Science Lecture 3, pagel14

Layered OS design

User programs

Device drivers

Virtual memory

I/O channel
Cpu scheduler

Hardware

Layer N: uses layer N-1 and provides new functionality to N+1

* Advantages: modularity, simplicity, portability, ease of
design/debugging

« Disadvantage - communication overhead between layers,
extra copying, book-keeping

) CompuTer' Science CS377: Operating Systems Lecture 3, pagel5

Microkernel

User Processes O \
SNe SIS

_

System High-Level User Mode
Processes File System Scheduling x
Network ‘
Thread External Support |
System Paging /

Microkernel Communication >
Processor i Kernel Mod:
Low-Level VM Protection Control /
Hardware

e Small kernel that provides communication (message
passing) and other basic functionality

e other OS functionality implemented as user-space processes

,"1

CompuTer' Science CS377: Operating Systems Lecture 3, pagel6

Microkernel Features

* Goal: to minimize what goes in the kernel (mechanism, no
policy), implementing as much of the OS in User-Level processes
as possible.

* Advantages

— better reliability, easier extension and customization
— mediocre performance (unfortunately)

* First Microkernel was Hydra (CMU '70). Current systems include
Chorus (France) and Mach (CMU).

) COI’\'\pUTGI" Science CS377: Operating Systems Lecture 3, pagel7

Mac OS X - hybrid approach

application environments
and common services

P

BSD

kernel
environment

Mach

* Layered system: Mach microkernel (mem, RPC, IPC) + BSD
(threads, CLI, networking, filesystem) + user-level services (GUI)

‘ Computer Science CS377: Operating Systems Lecture 3, page18

Modules

» Most modern operating systems implement kernel
modules
— Uses object-oriented approach
— Each core component is separate
— Each talks to the others over known interfaces
— Each is loadable as needed within the kernel

* Overall, similar to layers but with more flexible

5 CompuTer' Science CS377: Operating Systems Lecture 3, page19

Solaris Modular Approach

scheduling
classes

device and
bus drivers

core Solaris
kernel

loadable
system calls

miscellaneous
modules

executable
formats

STREAMS
modules

5 CompuTer' Science CS377: Operating Systems Lecture 3, page20

Summary

Big Design Issue: How do we make the OS efficient, reliable, and
extensible?

General OS Philosophy: The design and implementation of an
OS involves a constant tradeoff between simplicity and
performance. As a general rule, strive for simplicity except when
you have a strong reason to believe that you need to make a
particular component complicated to achieve acceptable
performance (strong reason = simulation or evaluation study)

COI’\'\pUTBI" Science CS377: Operating Systems Lecture 3, page21

Processes

The OS manages a variety of activities:
— User programs
— Batch jobs and command scripts
— System programs: printers, spoolers, name servers, file servers, network
listeners, etc.

Each of these activities is encapsulated in a process.

A process includes the execution context (PC, registers, VM,
resources, etc.) and all the other information the activity needs to
run.

A process is not a program. A process 1s one instance of a program
in execution. Many processes can be running the same program.
Processes are independent entities.

COI’\'\pUTBI" Science CS377: Operating Systems Lecture 3, page22

OS and Processes

The OS creates, deletes, suspends, and resumes processes.

The OS schedules and manages processes.

The OS manages inter-process communication and
synchronization.

The OS allocates resources to processes.

Computer Science CS377: Operating Systems Lecture 3, page23

What's in a Process?

Process: dynamic execution context of an executing program

Several processes may run the same program, but each is a distinct process
with its own state (e.g., MS Word).

A process executes sequentially, one instruction at a time

Process state consists of at least:

the code for the running program,

the static data for the running program,

space for dynamic data (the heap), the heap pointer (HP),

the Program Counter (PC), indicating the next instruction,

an execution stack with the program's call chain (the stack), the stack pointer (SP)
values of CPU registers

a set of OS resources in use (e.g., open files)

process execution state (ready, running, etc.).

Computer Science CS377: Operating Systems Lecture 3, page24

Example Process State in Memory

What you wrote: What’s in memory
. . static data segment
void X (int b){ HP— . =
eap
PC> if(b==1)... |
} SP -
X;b=2
}
main(){ main; a= 2 stack
. _ . void X (intb) {
inta=2; PC—=[if (b==1)...
X(a);
()’ void main() {
} inta=2
X (a);
1 text segment
Process State
Compu‘rer' Science CS377: Operating Systems Lecture 3, page25

Process Execution State

» Execution state of a process indicates what it is doing

new: the OS is setting up the process state
running: executing instructions on the CPU
ready: ready to run, but waiting for the CPU
waiting: waiting for an event to complete

terminated: the OS is destroying this process

* As the program executes, it moves from state to state, as
a result of the program actions (e.g., system calls), OS
actions (scheduling), and external actions (interrupts).

Nt

- CompuTer' Science CS377: Operating Systems Lecture 3, page26

Process Execution State

Waitiry

state sequence
Example:

void main() {
printf(‘Hello World’);

}

* The OS manages multiple active process using state queues (More
on this in a minute...)

E CompuTer' Science CS377: Operating Systems Lecture 3, page27

Process Execution State
@M%Z@“\g B

Waitiry

state sequence
new
Example: ready

running

void main() { waiting for I/O

printf(‘Hello World’); ready

} running

terminated

* The OS manages multiple active process using state queues (More
on this in a minute...)

: CompuTer' Science CS377: Operating Systems Lecture 3, page28

