Data Centers and Cloud Computing

- Intro. to Data centers
- Virtualization Basics
- Intro. to Cloud Computing

Data Centers

- Large server and storage farms
 - 1000s of servers
 - Many TBs or PBs of data
- Used by
 - Enterprises for server applications
 - Internet companies
 - Some of the biggest DCs are owned by Google, Facebook, etc
- Used for
 - Data processing
 - Web sites
 - Business apps
Inside a Data Center

- Giant warehouse filled with:
 - Racks of servers
 - Storage arrays
 - Cooling infrastructure
 - Power converters
 - Backup generators

MGHPCC Data Center

- Data center in Holyoke
Modular Data Center

- ...or use shipping containers
- Each container filled with thousands of servers
- Can easily add new containers
 - “Plug and play”
 - Just add electricity
- Allows data center to be easily expanded
- Pre-assembled, cheaper

Virtualization

- Virtualization: extend or replace an existing interface to mimic the behavior of another system.
 - Introduced in 1970s: run legacy software on newer mainframe hardware
- Handle platform diversity by running apps in VMs
 - Portability and flexibility
Types of Interfaces

• Different types of interfaces
 – Assembly instructions
 – System calls
 – APIs
• Depending on what is replaced/mimicked, we obtain different forms of virtualization
• Emulation (Bochs), OS level, application level (Java, Rosetta, Wine)

Types of OS-level Virtualization

• Type 1: hypervisor runs on “bare metal”
• Type 2: hypervisor runs on a host OS
 – Guest OS runs inside hypervisor
• Both VM types act like real hardware
Server Virtualization

- Allows a server to be “sliced” into Virtual Machines
- VM has own OS/applications
- Rapidly adjust resource allocation
- VM migration within a LAN

Virtualization in Data Centers

- Virtual Servers
 - Consolidate servers
 - Faster deployment
 - Easier maintenance

- Virtual Desktops
 - Host employee desktops in VMs
 - Remote access with thin clients
 - Desktop is available anywhere
 - Easier to manage and maintain

![Virtualization Layer Diagram]

Windows
Linux

Windows
Linux

Xen
KVM
Parallels
vmware
Data Center Challenges

• Resource management
 – How to efficiently use server and storage resources?
 – Many apps have variable, unpredictable workloads
 – Want high performance and low cost
 – Automated resource management
 – Performance profiling and prediction

• Energy Efficiency
 – Servers consume huge amounts of energy
 – Want to be “green”
 – Want to save money

Data Center Costs

• Running a data center is expensive

Economy of Scale

- Larger data centers can be cheaper to buy and run than smaller ones
 - Lower prices for buying equipment in bulk
 - Cheaper energy rates

- Automation allows small number of sys admins to manage thousands of servers

- General trend is towards larger mega data centers
 - 100,000s of servers

- Has helped grow the popularity of cloud computing

What is the cloud?

- Remotely available
- Pay-as-you-go
- High scalability
- Shared infrastructure
The Cloud Stack

Software as a Service
- Hosted applications
 - Managed by provider
 - Office apps, CRM

Platform as a Service
- Platform to let you run your own apps
 - Provider handles scalability
 - Azure

Infrastructure as a Service
- Raw infrastructure
 - Can do whatever you want with it
 - Servers & storage

IaaS: Amazon EC2

- Rents servers and storage to customers
 - Uses virtualization to share each server for multiple customers
 - Economy of scale lowers prices
 - Can create VM with push of a button

<table>
<thead>
<tr>
<th></th>
<th>Smallest</th>
<th>Medium</th>
<th>Largest</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCPUs</td>
<td>1</td>
<td>5</td>
<td>33.5</td>
</tr>
<tr>
<td>RAM</td>
<td>613MB</td>
<td>1.7GB</td>
<td>68.4GB</td>
</tr>
<tr>
<td>Price</td>
<td>$0.02/hr</td>
<td>$0.17/hr</td>
<td>$2.10/hr</td>
</tr>
<tr>
<td>Storage</td>
<td>$0.10/GB per month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>$0.10 per GB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PaaS: Google App Engine

- Provides highly scalable execution platform
 - Must write application to meet App Engine API
 - App Engine will autoscale your application
 - Strict requirements on application state
 - “Stateless” applications much easier to scale

- Not based on virtualization
 - Multiple users’ threads running in same OS
 - Allows google to quickly increase number of “worker threads” running each client’s application

- Simple scalability, but limited control
 - Only supports Java and Python

Public or Private

- Not all enterprises are comfortable with using **public cloud** services
 - Don’t want to share CPU cycles or disks with competitors
 - Privacy and regulatory concerns

- **Private Cloud**
 - Use cloud computing concepts in a private data center
 - Automate VM management and deployment
 - Provides same convenience as public cloud
 - May have higher cost

- **Hybrid Model**
 - Move resources between private and public depending on load
Programming Models

- Client/Server
 - Web servers, databases, CDNs, etc

- Batch processing
 - Business processing apps, payroll, etc

- Map Reduce
 - Data intensive computing
 - Scalability concepts built into programming model

Cloud Challenges

- Privacy / Security
 - How to guarantee isolation between client resources?

- Extreme Scalability
 - How to efficiently manage 1,000,000 servers?

- Programming models
 - How to effectively use 1,000,000 servers?
• Term paper on cloud computing
 – What is it?
 – Explain types: IASS, PAAS, SAAS, give examples

• Amazon EC2 cloud
 – Pricing models
 – Features

• Google app engine
 – Features
 – Pricing

• Examples of when to use each