Course Snapshot

We have covered all the fundamental OS components:

Architecture and OS interactions
* Processes and threads

* Synchronization and deadlock

* Process scheduling

* Memory management

 File systems and I/O

5 Computer Science CS377: Operating Systems

Lecture 20, page 1

The Next Few Classes

¢ Distributed Systems

— Networking Basics

— Distributed services (email, www, telnet)
— Distributed Operating Systems

— Distributed File Systems

* QGuest lectures and special topics

— Linux

omputer Science (CS377: Operating Systems

Lecture 20, page 2

Distributed Systems

* Distributed system: a set of physically separate processors
connected by one or more communication links

G
ey @
\ \/ \i
: \P3)
Network

-
S
wi
* Nearly all systems today are distributed in some way.
— Email, file servers, network printers, remote backup, world wide web

; Compufer Science CS377: Operating Systems Lecture 20, page 3

Parallel versus Distributed Systems

* Tightly-coupled systems: “parallel processing”
— Processors share clock, memory, and run one OS
— Frequent communication

* Loosely-coupled systems: “distributed computing”
— Each processor has its own memory
— Each processor runs an independent OS
— Communication should be less frequent

; Compufer Science CS377: Operating Systems Lecture 20, page 4

Advantages of Distributed Systems

* Resource sharing:

— Resources need not be replicated at each processor (for example, shared
files)

— Expensive (scarce) resources can be shared (for example, printers)

— Each processor can present the same environment to the user (for
example, by keeping files on a file server)

¢ Computational speedup:
— n processors potentially gives you n times the computational power
— Problems must be decomposable into subproblems

— Coordination and communication between cooperating processes
(synchronization, exchange of results) is needed.

Compufer Science CS377: Operating Systems Lecture 20, page 5

Advantages of Distributed Systems

* Reliability:
— Replication of resources yields fault tolerance.
— For example, if one node crashes, the user can work on another.
— Performance will degrade, but system remains operational.

— However, if some component of the system is centralized, a single point
of failure may result

— Example: If an Edlab workstation crashes, you can use another
workstation. If the file server crashes, none of the workstations are
useful.

Communication:
— Users/processes on different systems can communicate.

— For example, mail, transaction processing systems like airlines, and
banks, WWW.

Compufer Science CS377: Operating Systems Lecture 20, page 6

Distributed Systems

¢ Modern work environments are distributed => operating systems
need to be distributed

* What do we need to consider when building these systems?

Communication and networks

Transparency (how visible is the distribution?)
Security

Reliability

Performance and scalability

Programming models

; Computer Science CS377: Operating Systems

Lecture 20, page 7

Distributed System Design

What gets harder when we move from a stand alone system to a
distributed environment?

e resource sharing

* timing (e.g., synchronization)

e critical sections

* deadlock detection and recovery

* failure recovery

Computer Science

Lecture 20, page 8

Networks

* Networks are usually concerned with providing efficient,
correct, and robust message passing between two separate nodes.

* Local Area Network (LAN) usually connects nodes in a single
building and needs to be fast and reliable (for example,
Ethernet).

— Media: twisted-pair, coaxial cable, fiber optics
— Typical bandwidth: 10-100-1000 Mb/s (10Gb/s now available)

* Wide Area Network (WAN) connects nodes across the state,

country, or planet.

— WANS are typically slower and less reliable than LAN (for example,
Internet).

— Media: telephone lines (T1 service), microwave links, satellite channels
— Typical bandwidth: 1.544 Mb/s (T1), 45 Mb/s (T3)

Compufer Science CS377: Operating Systems Lecture 20, page 9

Principles of Network Communication

* Data sent into the network is chopped into “packets”, the
network's basic transmission unit.

« Packets are sent through the network.

« Computers at the switching points control the packet flow.
* Analogy: cars/road/police - packets/network/computer

« Shared resources can lead to contention (traffic jams).

e Analogy:
— Shared node - Mullins Center
— Shared link - bridge

Compufer Science CS377: Operating Systems Lecture 20, page 10

Communication Protocols

* Protocol: a set of rules for communication that are agreed to by
all parties
* Protocol stack : networking software is structured into layers

— Each layer N, provides a service to layer N+1, by using its own layer N
procedures and the interface to the N-1 layer.

— Example: International Standards Organization/ Open Systems
Interconnect (ISO/OSI)

Application Virtual peer-to-peer Application
H connection i

Presentation | <------------ = || Presentation

Session I | Session
Transport I | Transport
Network I . Network . | Network
Data Link Ctl Data Link C Data Link Ctl
Physical Physical Physical
. N N\
® (® (©
Compufer Science CS377: Operating Systems Lecture 20, page 11

ISO Network Protocol Stack

« Application layer: applications that use the net, e.g., mail, netscape, X-
services, ftp, telnet, provide a Ul

* Presentation layer: data format conversion, e.g., big/little endian integer
format)

. Session layer: implements the communication strategy, such as RPC.
Provided by libraries.

. Transport layer: reliable end-to-end communication between any set of
nodes. Provided by OS.

* Network layer: routing and congestion control. Usually implemented in OS.

« Data Link Control layer: reliable point-to-point communication of packets
over an unreliable channel. Sometimes implemented in hardware, sometimes
in software (PPP).

* Physical layer: electrical/optical signaling across a “wire”. Deals with
timing issues. Implemented in hardware.

Compufer Science CS377: Operating Systems Lecture 20, page 12

TCP/IP Protocol Stack

User Application Process

file transfer protocol, FTP

mail transfer protocol, SMTP

layers 5-7 name server protocol, NSP

WWW, http

remote terminal protocol, telnet

network management protocol, SNMP

layer 4 TCP \ UDP

layer 1-3 P

IEEE802.X/X.25

LAN/WAN

Most Internet sites use TCP/IP - Transmission Control Protocol/
Internet Protocol.

It has fewer layers than ISO to increase efficiency.
Consists of a suite of protocols: UDP, TCP, IP...

TCP is a reliable protocol -- packets are received in the order they are

sent

UDP (user datagram protocol) an unreliable protocol (no guarantee of

delivery).

Computer Science CS377: Operating Systems

Lecture 20, page 13

Each message is chopped into packets.

Packet

Each packet contains all the information needed to recreate the original

message.

For example, packets may arrive out of order and the destination node

must be able to put them back into order.
Ethernet Packet Contents

bytes

7 preamble - start of packet fixed pattern so packet start is
start of frame delimiter recognizable

1

6 destination address

6 source address

2 length of data section
0-1500

data

0-46 | pad(optional) packet must be > 63 bytes long

4 frame checksum

The data segment of the packet contains headers for higher protocol layers

and actual application data

Computer Science CS377: Operating Systems

Lecture 20, page 14

Point-to-Point Network Topologies

Fully Connected
¢ Fully connected: all nodes connected to all other nodes

— Each message takes only a single “hop”, i.e., goes directly to the
destination without going through any other node

— Failure of any one node does not affect communication between other
nodes

— Expensive, especially with lots of nodes, not practical for WANs

B Compufer Science CS377: Operating Systems Lecture 20, page 15

Point-to-Point Network Topologies
DY

C)

Partially Connected
* Partially connected: links between some, but not all nodes
— Less expensive, but less tolerant to failures. A single failure can partition
the network.

— Sending a message to a node may have to go through several other nodes
=>need routing algorithms.

— WANS typically use this structure.

omputer Science CS377: Operating Systems Lecture 20, page 16

Point-to-Point Networks Topologies

N
AN

QO

e

Tree Structured

* Tree structure: network hierarchy

— All messages between direct descendants are fast, but messages between
“cousins” must go up to a common ancestor and then back down.

— Some corporate networks use this topology, since it matches a hierarchical

world view...
— Not tolerant of failures. If any interior node fails, the network is
partitioned.
- Compufer- Science CS377: Operating Systems Lecture 20, page 17

Point-to-Point Networks Topologies

/\Q/
OO0
T

Star

 Star: - all nodes connect to a single centralized node
— The central site is generally dedicated to network traffic.
— Each message takes only two hops.
— If one piece of hardware fails, that disconnects the entire network.

— Inexpensive, and sometimes used for LAN

Compufer Science CS377: Operating Systems Lecture 20, page 18

Ring Networks Topologies

oate

/
OO

Ring

* One directional ring - nodes can only send in one direction.
— Given n nodes, message may need to go n-/ hops.
— Inexpensive, but one failure partitions the network.

* Bi-directional ring - nodes can send in either direction.
— With n nodes, a message needs to go at at most 7/2 hops.

— Inexpensive, tolerates a single failure by increasing message hops. Two
failures partition the network.

Compufer- Science CS377: Operating Systems Lecture 20, page 19

Ring Networks Topologies

Doubly Linked Ring

* Doubly connected ring nodes connected to neighbors and one
away neighbors
— A message takes at most /4 hops.
— More expensive, but more tolerant of failures.

Compufer- Science CS377: Operating Systems Lecture 20, page 20

Bus Network Topologies

Y N N YN O ‘C)‘
NN NG AN AN () ()
[[1 \/f\<\/
Linear Bus \\
/
% ral
/ ‘\/
Ring Bus

* Bus nodes connect to a common network

* Linear bus - single shared link
— Nodes connect directly to each other using multiaccess bus technology.
— Inexpensive (linear in the number of nodes) and tolerant of node failures.
— Ethernet LAN use this structure.

* Ring bus - single shared circular link
— Same technology and tradeoffs as a linear bus.

Compufer- Science CS377: Operating Systems Lecture 20, page 21

Resource Sharing

There are many mechanisms for sharing (hardware, software, data) resources.
* Data Migration: moving the data around

* Computation Migration: move the computation to the data
* Job Migration: moving the job (computation and data) or part of the job

=> The fundamental tradeoff in resource sharing is to complete user
instructions as fast and as cheaply as possible. (Fast and cheap
are usually incompatible.)

If communication is cheap: use all resources
If computation is slow/expensive: local processing
Reality is somewhere in between

Computer Science Lecture 20, page 22

Client/Server Model

One of the most common models for structuring distributed
computation is by using the client/server paradigm.

— Aserver is a process or collection of processes that provide a service, e.g.,
name service, file service, database service, etc.

— The server may exist on one or more nodes.
— Aclient is a program that uses the service.

— A client first binds to the server, i.e., locates it in the network and
establishes a connection.

— The client then sends the server a request to perform some action. The
server sends back a response.

— RPC is one common way this structure is implemented.

Computer Science Lecture 20, page 23

Remote Procedure Call

Basic idea:

Servers export procedures for some set of clients to call.
To use the server, the client does a procedure call.
OS manages the communication.

Computer Science Lecture 20, page 24

Remote Procedure Call: Implementation
Issues

For each procedure on which we want to support RPC:

¢ The RPC mechanism uses the procedure signature (number and
type of arguments and return value)
— to generate a client stub that bundles up the RPC arguments
and sends it off to the server, and
— to generate the server stub that unpacks the message, and
makes the procedure call.

Computer Science Lecture 20, page 25

Remote Procedure Call:

Implementation Issues
Client Stub: Server Stub:

. create threads
build message

loop
send message wait for a command
wait for response unpack request parameters
unpack reply call procedure with thread
return result build reply with result(s)
send reply
end loop

Comparison between RPC and a regular procedure call
» Name of procedure

» Parameters

* Result

* Return address

Computer Science Lecture 20, page 26

Remote Procedure Call

* How does the client know the right port?
— The binding can be static - fixed at compile time.
— Or the binding can be dynamic - fixed at runtime.

¢ In most RPC systems, dynamic binding is performed using a
name service.

— When the server starts up, it exports its interface and identifies itself to a
network name server

— The client, before issuing any calls, asks the name service for the location
of a server whose name it knows and then establishes a connection with
the server.

omputer Science Lecture 20, page 27

Example: Remote Method Invocation (RMI) in
Java

« Java provides the following classes/interfaces:
— Naming: class that provides the calls to communicate with the remote
object registry
— public static void bind(String name, Remote obj) - Binds a server to a name.
— public static Remote lookup(String name) - Returns the server object that
corresponds to a name.
* UnicastRemoteObject: supports references to non-replicated
remote objects using TCP, exports the interface automatically
when the server object is constructed

« Java provides the following tools:

— rmiregistry server-side name server

— rmic: given the server interface, generates client and server stubs that
create and interpret packets

5 Computer Science Lecture 20, page 28

Example: Server in Java

e Server

— Defines an interface listing the signatures of methods the server will
satisfy

— Implements each of the methods in the interface
— Main program for server:

* Creates one or more server objects - normal constructor call where
the object being constructed is a subclass of RemoteObject

* Registers the objects with the remote object registry
* Client
— Looks up the server in the remote object registry
— Uses normal method call syntax for remote methods
— Should handle RemoteException

Computer Science Lecture 20, page 29

Example: Hello World Server Interface

Declare the methods that the server provides:

package examples.hello;

// All servers must extend the Remote interface.
public interface Hello extends java.rmi.Remote {

/I Any remote method might throw RemoteException.
// Indicates network failure.
String sayHello() throws java.rmi.RemoteException;

Computer Science Lecture 20, page 30

Example: Hello World Server

package examples.hello;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloImpl extends UnicastRemoteObject implements Hello
{
public Hellolmpl() throws RemoteException {
// The superclass constructor exports the interface and gets a port
super();

public String sayHello() throws RemoteException {
// This is the "service" provided.
return "Hello World!";

Computer Science Lecture 20, page 31

Example: Hello World Server (contd)

public static void main(String args[])

{
// Create and install a security manager
System.setSecurityManager(new RMISecurityManager());

/I Construct the server object.
HelloImpl obj = new HelloImpl();

// Register the server with the name server.
Naming.rebind("//myhost/HelloServer", obj);

Computer Science Lecture 20, page 32

Example: Hello World Client

package examples.hello;

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet.Applet {

nn,
>

String message =

// The init method begins the execution of the applet on the client
// machine that is viewing the Web page containing the reference
// to the applet.
public void init() {
try {
// Looks up the server using the name server on the host that
// the applet came from.
Hello obj = (Hello)Naming.lookup(
"//" + getCodeBase().getHost() + "/HelloServer");

Computer Science Lecture 20, page 33

Example: Hello World Client (contd)

// Calls the sayHello method on the remote object.
message = obj.sayHello();
} catch (RemoteException e) {
System.out.printin("HelloApplet RemoteException caught");

H
}

public void paint(Graphics g) {
/I The applet will write the string returned by the remote method
// call on the display.

g.drawString(message, 25, 50);
}
}

Computer Science Lecture 20, page 34

Summary

Virtually all computer systems contain distributed components

Networks hook them together

Networks make tradeoffs between speed, reliability, and expense

Computer Science CS377: Operating Systems

Lecture 20, page 35

