Last Class: CPU Scheduling

* Pre-emptive versus non-preemptive schedulers
* Goals for Scheduling:

— Minimize average response time
— Maximize throughput
— Share CPU equally
— Other goals?
* Scheduling Algorithms:
— Selecting a scheduling algorithm is a policy decision - consider tradeoffs
— FSCS
— Round-robin
— SJF/SRTF
— MLFQ
— Lottery scheduler

g Computer Science CS377: Operating Systems Lecture 5, page |

Today: Threads

* What are threads?

* Where should we implement threads? In the kernel? In a user
level threads package?

* How should we schedule threads (or processes) onto the CPU?

: omputer Science CS377: Operating Systems Lecture 5, page 2

Processes versus Threads

* A process defines the address space, text, resources, etc.,

* A thread defines a single sequential execution stream within a
process (PC, stack, registers).

* Threads extract the thread of control information from the
process

« Threads are bound to a single process.

* Each process may have multiple threads of control within it.
— The address space of a process is shared among all its threads

— No system calls are required to cooperate among threads
— Simpler than message passing and shared-memory

omputer Science CS377: Operating Systems Lecture 5, page 3

Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —> <«—— thread
single-threaded process multithreaded process

omputer Science CS377: Operating Systems Lecture 5, page 4

Classifying Threaded Systems

Operating Systems can support one or many address spaces, and one or many
threads per address space.

Address Space

(D_ Thread

MS/DOS UNIX, Ultrix

& & ECraREEE;
00 (¢) 09

Xerox Pilot. Embedded Svstems Mach. Chorus. NT. Solaris

5 COI’I’\pUTeI" Science CS377: Operating Systems Lecture 5, page 5

Example Threaded Program

main() One possible
global in, out, n, buffer[n]; memory layout:
in = 0; out = 0;

fork_thread (producer()); e data
fork_thread (consumer()); heap|
end
thread 2
producer 1
repeat SP, stack
nextp = produced item o thread 1
while in+1 mod n = out do no-op ! s_l_k
buffer[in] = nextp; in = (in+1) mod n -
PC—] text
consumer
repeat PeT

while in = out do no-op
nextc = buffer[out]; out = (out+1) mod n
consume item nextc

Memory

* Forking a thread can be a system call to the kernel, or a
procedure call to a thread library (user code).

5 COI’I’\pUTeI" Science CS377: Operating Systems Lecture 5, page 6

Kernel Threads

* A Kkernel thread, also known as a lightweight process, is a thread
that the operating system knows about.

* Switching between kernel threads of the same process requires a
small context switch.

— The values of registers, program counter, and stack pointer must be
changed.

— Memory management information does not need to be changed since the
threads share an address space.

* The kernel must manage and schedule threads (as well as
processes), but it can use the same process scheduling algorithms.

=>» Switching between kernel threads is slightly faster than
switching between processes.

Computer Science (CS377: Operating Systems Lecture 5, page 7

User-Level Threads

* A user-level thread is a thread that the OS does not know about.
* The OS only knows about the process containing the threads.

* The OS only schedules the process, not the threads within the
process.

* The programmer uses a thread library to manage threads (create
and delete them, synchronize them, and schedule them).

Computer Science (CS377: Operating Systems Lecture 5, page 8

User-Level Threads

Thread Ready Thread Ready
Queue Current Thread for each Process Queue

O= Q OO

User é) é) User-Level Thread Schedule
i O O O

Kernel Processes

T T+ O

Process Ready Queue

g Computer Science CS377: Operating Systems Lecture 5, page 9

User-Level Threads: Advantages

* There is no context switch involved when switching threads.

« User-level thread scheduling is more flexible
— A user-level code can define a problem dependent thread scheduling policy.
— Each process might use a different scheduling algorithm for its own threads.

— A thread can voluntarily give up the processor by telling the scheduler it
will yield to other threads.

* User-level threads do not require system calls to create them or
context switches to move between them

= User-level threads are typically much faster than kernel
threads

: omputer Science CS377: Operating Systems Lecture 5, page 10

User-Level Threads: Disadvantages

* Since the OS does not know about the existence of the user-level
threads, it may make poor scheduling decisions:
— It might run a process that only has idle threads.
— If auser-level thread is waiting for I/O, the entire process will wait.
— Solving this problem requires communication between the kernel and the
user-level thread manager.
 Since the OS just knows about the process, it schedules the
process the same way as other processes, regardless of the
number of user threads.
* For kernel threads, the more threads a process creates, the more
time slices the OS will dedicate to it.

Lecture 5, page 11

Computer Science CS377: Operating Systems

Example: Kernel and User-Level
Threads in Solaris

(g (\D— = (D_ User Thread
jeRelge fetetet
OO O T TG T OO Em

O Address Space

O Lightweight process

CD_ Thread

Lecture 5, page 12

Computer Science CS377: Operating Systems

Threading Models
$ S e

;
® 6O O

* Many-to-one, one-to-one, many-to-many and two-level

Computer Science C8377: Operating Systems Lecture 5, page 13

Two-level Model

S RS

@ <«—— Kkernel thread

Compu‘rer‘ Science CS377: Operating Systems Lecture 5, page 14

Thread Libraries

 Thread library provides programmer with API for
creating and managing threads
* Two primary ways of implementing
— Library entirely in user space
— Kernel-level library supported by the OS

CompuTer' Science CS377: Operating Systems Lecture 5, page 15

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1¢) API for thread
creation and synchronization

API specifies behavior of the thread library,
implementation is up to development of the library

* Common in UNIX operating systems (Solaris, Linux,
Mac OS X)

WIN32 Threads: Similar to Posix, but for Windows

CompuTer' Science CS377: Operating Systems Lecture 5, page 16

Java Threads

 Java threads are managed by the JVM

* Typically implemented using the threads model
provided by underlying OS

« Java threads may be created by:

— Extending Thread class
— Implementing the Runnable interface

CS377: Operating Systems Lecture 5, page 17

Examples

Pthreads:
pthread_attr_init(&attr); /* set default attrributes */

pthread create(&tid, &attr, sum, ¶m);

Win32 threads
ThreadHandle

CreateThread(NULL, 0, Sum, &Param, 0, &ThreadID);

Java Threads:

Sum sumObject new Sum();
Thread t = new Thread(new Summation(param, SumObject));

t.start(); // start the thread

CS377: Operating Systems Lecture 5, page 18

Summary

» Thread: a single execution stream within a process

« Switching between user-level threads is faster than between kernel
threads since a context switch is not required.

« User-level threads may result in the kernel making poor
scheduling decisions, resulting in slower process execution than if
kernel threads were used.

* Many scheduling algorithms exist. Selecting an algorithm is a
policy decision and should be based on characteristics of
processes being run and goals of operating system (minimize
response time, maximize throughput, ...).

Computer Science CS377: Operating Systems Lecture 5, page 19

