
Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Last Class: OS and Computer Architecture

• CPU, memory, I/O devices, network card, system bus

Network
card

System bus

1

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Last Class: OS and Computer Architecture

OS Service Hardware Support
Protection Kernel/user mode, protected 

instructions, base/limit registers

Interrupts Interrupt vectors

System calls Trap instructions and trap vectors

I/O Interrupts and memory mapping

Scheduling, error recovery, 
accounting

Timer

Syncronization Atomic instructions

Virtual memory Translation look-aside buffers

2



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Today: OS Structures & Services
• More on System Calls
• Introduce the organization and components in an OS.
• Four example OS organizations

– Monolithic kernel
– Layered architecture
– Microkernel
– Modular

3

Computer Science Lecture 3, page Computer Science

Class Exercise

• ios 7 and iphone 5S
– “iphone 5S first 64-bit smartphone, ios7 64-bit OS”

• iphone has M7 co-processor in addition to main A7 
processor
– Offloads work (primarily sensor data processing) from main 

CPU to co-processor

• Critique these design decisions. Benefits?

4



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

System Calls

• Programming interface to the services provided by the OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs via a high-level Application 

Program Interface (API) rather than direct system call use
• Three most common APIs are Win32 API for Windows, POSIX 

API for POSIX-based systems (including virtually all versions of 
UNIX, Linux, and Mac OS X), and Java API for the Java virtual 
machine (JVM)

• Why use APIs rather than system calls?

5

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Standard C Library Example
• C program invoking printf() library call, which 

calls write() system call

6



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Example of Standard API

• Consider the ReadFile() function in the
• Win32 API—a function for reading from a file

• A description of the parameters passed to ReadFile()
– HANDLE file—the file to be read
– LPVOID buffer—a buffer where the data will be read into and written from
– DWORD bytesToRead—the number of bytes to be read into the buffer
– LPDWORD bytesRead—the number of bytes read during the last read
– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

7

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

System Call Implementation

• Typically, a number associated with each system call
– System-call interface maintains a table indexed according to these numbers

• The system call interface invokes intended system call in OS 
kernel and returns status of the system call and any return values

• The caller need know nothing about how the system call is 
implemented
– Just needs to obey API and understand what OS will do as a result call
– Most details of  OS interface hidden from programmer by API  

• Managed by run-time support library (set of functions built into libraries 
included with compiler)

8



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

API – System Call – OS Relationship

9

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

System Call Parameter Passing

• Often, more information is required than simply identity of 
desired system call
– Exact type and amount of information vary according to OS and call

• Three general methods used to pass parameters to the OS
– Simplest:  pass the parameters in registers

•  In some cases, may be more parameters than registers
– Parameters stored in a block, or table, in memory, and address of block 

passed as a parameter in a register 
• This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by the program and popped off 
the stack by the operating system

– Block and stack methods do not limit the number or length of parameters 
being passed

10



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Examples of Windows and Unix System Calls

11

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

One Basic OS Structure

• The kernel is the protected part of the OS that runs in 
kernel mode, protecting the critical OS data structures 
and device registers from user programs.

•  Debate about what functionality goes into the kernel 
(above figure: UNIX) - “monolithic kernels”

12



Computer Science Lecture 3, page Computer Science

Mac OS X Architecture

13

Computer Science Lecture 3, page Computer Science

Windows 8 Architecture

14



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Layered OS design

Layer N: uses layer N-1 and provides new functionality to N+1
• Advantages: modularity, simplicity, portability, ease of 

design/debugging
• Disadvantage - communication overhead between layers, 

extra copying, book-keeping

User programs

Device drivers
Virtual memory

I/O channel
Cpu scheduler

Hardware

15

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Microkernel

• Small kernel that provides communication (message 
passing) and other basic functionality
• other OS functionality implemented as user-space processes

16



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Microkernel Features
• Goal: to minimize what goes in the kernel (mechanism, no 

policy), implementing as much of the OS in User-Level processes 
as possible.

• Advantages
– better reliability, easier extension and customization
– mediocre performance (unfortunately)

• First Microkernel was Hydra (CMU '70). Current systems include 
Chorus (France) and Mach (CMU).

17

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Mac OS X - hybrid approach

• Layered system: Mach microkernel (mem, RPC, IPC) + BSD 
(threads, CLI, networking, filesystem) + user-level services (GUI)

18



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Modules

• Most modern operating systems implement kernel 
modules
– Uses object-oriented approach
– Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

19

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Solaris Modular Approach

20



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Summary

• Big Design Issue: How do we make the OS efficient, reliable, and 
extensible?

• General OS Philosophy: The design and implementation of an 
OS involves a constant tradeoff between simplicity and 
performance. As a general rule, strive for simplicity except when 
you have a strong reason to believe that you need to make a 
particular component complicated to achieve acceptable 
performance (strong reason = simulation or evaluation study)

21

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Processes

• The OS manages a variety of activities:
– User programs
– Batch jobs and command scripts
– System programs: printers, spoolers, name servers, file servers, network 

listeners, etc.
• Each of these activities is encapsulated in a process.
• A process includes the execution context (PC, registers, VM, 

resources, etc.) and all the other information the activity needs to 
run.

• A process is not a program. A process is one instance of a program 
in execution.  Many processes can be running the same program.  
Processes are independent entities.

22



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

OS and Processes

• The OS creates, deletes, suspends, and resumes processes.

• The OS schedules and manages processes.

• The OS manages inter-process communication and 
synchronization.

• The OS allocates resources to processes.

23

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

What's in a Process?

• Process: dynamic execution context of an executing program
• Several processes may run the same program, but each is a distinct process 

with its own state (e.g., MS Word).
• A process executes sequentially, one instruction at a time
• Process state consists of at least:

! the code for the running program,
! the static data for the running program,
! space for dynamic data (the heap),  the heap pointer (HP),
! the Program Counter (PC), indicating the next instruction,
! an execution stack with the program's call chain (the stack), the stack pointer (SP)
! values of CPU registers
! a set of OS resources in use (e.g., open files)
! process execution state (ready, running, etc.).

24



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Example Process State in Memory

What you wrote:

    void X (int b){
           if ( b == 1 ) …
     }
 
     main(){
        int a = 2;
        X ( a );
    }
     

What’s in memory

PC ->

25

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Process Execution State
• Execution state of a process indicates what it is doing
� � new:� � the OS is setting up the process state
� � running:� executing instructions on the CPU
� � ready:�� ready to run, but waiting for the CPU
� � waiting:� waiting for an event to complete
� � terminated:� the OS is destroying this process
• As the program executes, it moves from state to state, as 

a result of the program actions (e.g., system calls), OS 
actions (scheduling), and external actions (interrupts).

26



Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Process Execution State

� � � � � �
� � � � � � state sequence
� � � � � �

Example:� � �

� � � � � �
� void main() {�� �        
�    printf(‘Hello World’);� �

� }� � � � �

� � � � � �

• The OS manages multiple active process using state queues (More 
on this in a minute…)

27

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Process Execution State

� � � � � �
� � � � � � state sequence
� � � � � � new
Example:� � �     ready
� � � � � � running
� void main() {�� � waiting for I/O
�    printf(‘Hello World’);� � ready
� }� � � � � running
� � � � � � terminated
• The OS manages multiple active process using state queues (More 

on this in a minute…)

28


