
Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Last Class: Synchronization

• Synchronization 
– Mutual exclusion
– Critical sections

• Example: Too Much Milk
•  Locks
• Synchronization primitives are required to ensure that only 
one thread executes in a critical section at a time.
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Review

• MLFQ CPU scheduler

• What is test & set?

• Implementing locks
– By disabling interrupts
– Using Test & Set
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Today: Semaphores
• Review: hardware support for synchronization

• What are semaphores?
– Semaphores are basically generalized locks.  
– Like locks, semaphores are a special type of variable that supports two 

atomic operations and offers elegant solutions to synchronization problems.
– They were invented by Dijkstra in 1965.
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Semaphores
• Semaphore: an integer variable that can be updated only using 

two special atomic instructions.
• Binary (or Mutex) Semaphore: (same as a lock)

– Guarantees mutually exclusive access to a resource (only one process is in 
the critical section at a time).  

– Can vary from 0 to 1
– It is initialized to free (value = 1)

• Counting Semaphore:
– Useful when multiple units of a resource are available
– The initial count to which the semaphore is initialized is usually the number 

of resources.
– A process can acquire access so long as at least one unit of the resource is 

available
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Semaphores: Key Concepts
• Like locks, a semaphore supports two atomic operations, Semaphore.Wait() and 

Semaphore.Signal().
 
 S.Wait()            // wait until semaphore S 
                         // is available 
   <critical section>

   S.Signal()          // signal to other processes 
                          // that semaphore S is free
• Each semaphore supports a queue of processes that are waiting to access the 

critical section (e.g., to buy milk).
• If a process executes S.Wait() and semaphore S is free (non-zero), it continues 

executing. If semaphore S is not free, the OS puts the process on the wait queue 
for semaphore S.

• A S.Signal() unblocks one process on semaphore S's wait queue.
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Binary Semaphores: Example
• Too Much Milk using locks:
      Thread A                    Thread B

     Lock.Acquire();            Lock.Acquire();
     if (noMilk){                if (noMilk){      
        buy milk;                          buy milk;
     }                            } 
     Lock.Release();            Lock.Release();

• Too Much Milk using semaphores:
  Thread A                    Thread B

       Semaphore.Wait();          Semaphore.Wait();
       if (noMilk){                if (noMilk){      
          buy milk;                         buy milk;
       }                            } 
       Semaphore.Signal();        Semaphore.Signal();
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Implementing Signal and Wait

=> Signal and Wait of course must be atomic!
– Use interrupts or test&set to ensure atomicity

class Semaphore {
  public:
    void Wait(Process P);
    void Signal();
  private:
   int value;
   Queue Q;    // queue of processes;
}
Semaphore(int val) {
   value = val;  
   Q = empty;    
}

Wait(Process P) {
   value = value - 1;
   if (value < 0) {
      add P to Q;
      P->block();
}  }
Signal() {
   value = value + 1;
   if (value <= 0){
      remove P from Q;
      wakeup(P);
}  }
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Signal and Wait: Example
P1:   S.Wait();
      S.Wait();   P2:   S.Wait();
      S.Signal();           S.Signal();
      S.Signal();
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Signal and Wait: Example
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Using Semaphores
• Mutual Exclusion: used to guard critical sections

– the semaphore has an initial value of 1
– S->Wait() is called before the critical section, and S->Signal() is  called after 

the critical section. 
• Scheduling Constraints: used to express general scheduling 

constraints where threads must wait for some circumstance.  
– The initial value of the semaphore is usually 0 in this case.
– Example: You can implement thread join (or the Unix system call 

waitpid(PID)) with semaphores:

Semaphore S;

S.value = 0; // semaphore initialization

Thread.Join          Thread.Finish
    S.Wait();           S.Signal();
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Multiple Consumers and Producers
class BoundedBuffer {
   public:
     void Producer();  
     void Consumer();
   private:
     Items buffer;
 // control access to buffers
     Semaphore mutex; 
    // count of free slots  
     Semaphore empty; 
    // count of used slots
     Semaphore full;  
}                      
BoundedBuffer::BoundedBuffer(
int N){
     mutex.value = 1;
     empty.value = N;
     full.value  = 0;
     new buffer[N];
}

BoundedBuffer::Producer(){
   <produce item>
   empty.Wait(); // one fewer slot, or 
wait
   mutex.Wait(); // get access to 
buffers
   <add item to buffer>
   mutex.Signal(); // release buffers
   full.Signal(); // one more used slot
}
BoundedBuffer::Consumer(){
   full.Wait(); //wait until there's an 
item
   mutex.Wait(); // get access to 
buffers
   <remove item from buffer>
   mutex.Signal(); // release buffers
   empty.Signal(); // one more free 
slot
   <use item> }
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Multiple Consumers and Producers Problem
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Summary
• Locks can be implemented by disabling interrupts or busy waiting

• Semaphores are a generalization of locks

• Semaphores can be used for three purposes:
– To ensure mutually exclusive execution of a critical section (as locks do).
– To control access to a shared pool of resources (using a counting 

semaphore).
– To cause one thread to wait for a specific action to be signaled from another 

thread.

13 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Next: Monitors and Condition Variables
• What is wrong with semaphores?

• Monitors
– What are they?
– How do we implement monitors? 
– Two types of monitors: Mesa and Hoare

• Compare semaphore and monitors
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What's wrong with Semaphores?
• Semaphores are a huge step up from the equivalent load/store 

implementation, but have the following drawbacks.
– They are essentially shared global variables. 
– There is no linguistic connection between the semaphore and the data to 

which the semaphore controls access.
– Access to semaphores can come from anywhere in a program.
– They serve two purposes, mutual exclusion and scheduling constraints. 
– There is no control or guarantee of proper usage.

• Solution: use a higher level primitive called monitors
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What is a Monitor?
• A monitor is similar to a  class that ties the data, operations, and   

in particular, the synchronization operations all together,

• Unlike classes, 
– monitors guarantee mutual exclusion, i.e., only one thread may execute a 

given monitor method at a time.
– monitors require all data to be private.
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Monitors: A Formal Definition
• A Monitor defines a lock and zero or more condition variables for 

managing concurrent access to shared data.
– The monitor uses the lock to insure that only a single thread is active in the 

monitor at any instance.
– The lock also provides mutual exclusion for shared data.
– Condition variables enable threads to go to sleep inside of critical sections, 

by releasing their lock at the same time it puts the thread to sleep.
• Monitor operations:

– Encapsulates the shared data you want to protect.
– Acquires the mutex at the start.
– Operates on the shared data.
– Temporarily releases the mutex if it can't complete.
– Reacquires the mutex when it can continue.
– Releases the mutex at the end.
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Implementing Monitors in Java
• It is simple to turn a Java class into a monitor:

– Make all the data private
– Make all methods synchronized (or at least the non-private ones)

class Queue{
  private ...;  // queue data

  public void synchronized Add( Object item ) {
    put item on queue;

  }

  public Object synchronized Remove() {

    if queue not empty {
       remove item;

       return item;
    }
  }
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Condition Variables
• How can we change remove() to wait until something is on the 

queue?
– Logically, we want to go to sleep inside of the critical section
– But if we hold on to the lock and sleep, then other threads cannot access the 

shared queue, add an item to it, and wake up the sleeping thread

 => The thread could sleep forever

• Solution: use condition variables
– Condition variables enable a thread to sleep inside a critical section
– Any lock held by the thread is atomically released when the thread is put to 

sleep
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Operations on Condition Variables
• Condition variable: is a queue of threads waiting for something 

inside a critical section. 
• Condition variables support three operations:

1. Wait(Lock lock): atomic (release lock, go to sleep), when the process 
wakes up it re-acquires lock.

2. Signal(): wake up waiting thread, if one exists.  Otherwise, it does 
nothing.

3. Broadcast(): wake up all waiting threads

• Rule: thread must hold the lock when doing condition variable 
operations.
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Condition Variables in Java
• Use wait() to give up the lock 
• Use notify() to signal that the condition a thread is waiting on is satisfied.
• Use notifyAll() to wake up all waiting threads.
• Effectively one condition variable per object.

class Queue {
  private ...;   // queue data

  public void synchronized Add( Object item ) {
    put item on queue;
    notify ();
  }
  public Object synchronized Remove() {
    while queue is empty 
        wait (); // give up lock and go to sleep
    remove and return item;
  }
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Mesa versus Hoare Monitors
What should happen when signal() is called?

– No waiting threads => the signaler continues and the signal is effectively 
lost (unlike what happens with semaphores).

– If there is a waiting thread, one of the threads starts executing,  others must 
wait 

• Mesa-style:  (Nachos, Java, and most real operating systems)
– The thread that signals keeps the lock (and thus the processor).
– The waiting thread waits for the lock.

• Hoare-style: (most textbooks)
– The thread that signals gives up the lock and the waiting thread gets the 

lock.
– When the thread that was waiting and is now executing exits or waits again, 

it releases the lock back to the signaling thread.
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Mesa versus Hoare Monitors (cont.)
The synchronized queuing example above works for either style of monitor, but we 

can simplify it for Hoare-style semantics:
– Mesa-style: the waiting thread may need to wait again after it is awakened, because 

some other thread could grab the lock and remove the item before it gets to run.
– Hoare-style: we can change the ‘while’ in Remove to an ‘if’ because the waiting 

thread runs immediately after an item is added to the queue.

class Queue {
  private ...;   // queue data
  public void synchronized add( Object item ){
    put item on queue;     notify ();
  }
  public Object synchronized remove() {
    if queue is empty   // while becomes if
       wait ();
    remove and return item;   
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Monitors in C++
• Monitors in C++ are more complicated.

• No synchronization keyword 
 => The class must explicitly provide the lock, acquire and release 

it correctly.
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Monitors in C++:  Example
class Queue {
  public:
     Add();
     Remove();
  private
     Lock lock;     
 // queue data();
}

Queue::Add() {
  lock->Acquire();    // lock before using data
  put item on queue;  // ok to access shared data
  conditionVar->Signal();
  lock->Release();     // unlock after access
}
Queue::Remove() {
  lock->Acquire();    // lock before using data
  while queue is empty
    conditionVar->Wait(lock); // release lock & sleep
  remove item from queue;
  lock->Release();    // unlock after access
  return item;
}
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Bounded Buffer using Hoare-style condition 
variables

class BBMonitor {
   public:  
   void Append(item); 
   void Remove(item);
   private:
     item buffer[N];
     int  last, count; 
     Condition full, empty;

}
BBMonitor {
   count = 0;
   last = 0;
}

Append(item){
  lock.Acquire();
  if (count == N) 
     empty.Wait(lock);
  buffer[last] = item;
  last = (last + 1) mod N;
  count += 1;
  full.Signal();
  lock.Release();
}
Remove(item){
  lock.Acquire();
  if (count == 0) 
     full.Wait(lock);
  item = buffer[(last-count) mod N];
  count = count-1;
  empty.Signal();
  lock.Release();
}
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Semaphores versus Monitors
• Can we build monitors out of semaphores?  After all, semaphores provide atomic 

operations and queuing.  Does the following work?
  condition.Wait() { semaphore.wait(); }
  condition.Signal() { semaphore.signal(); }

• But condition variables only work inside a lock.  If we use semaphores inside a lock, we 
have may get deadlock. Why?

• How about this?

condition.Wait(Lock *lock) {
      lock.Release();
      semaphore.wait();
      lock.Acquire();
   }
   condition.Signal() { 
       semaphore.signal();  }
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Semaphores versus Condition Variables

• Condition variables do not have any history, but semaphores do. 
– On a condition variable signal, if no one is waiting, the signal is a no-op.

  => If a thread then does a condition.Wait, it waits.
– On a semaphore signal, if no one is waiting, the value of the semaphore is 

incremented.
  => If a thread then does a semaphore.Wait, then value is 

decremented and the thread continues. 
• Semaphore Wait and Signal are commutative, the result is the 

same regardless of the order of execution
• Condition variables are not, and as a result they must be in a 

critical section to access state variables and do their job.
• It is possible to implement monitors with semaphores
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Implementing Monitors with Semaphores
class Monitor {
  public:
    void ConditionWait();   // Condition Wait 
    void ConditionSignal(); // Condition Signal
  private:
    <shared data>;          // data being protected by monitor
    semaphore cvar;         // suspends a thread on a wait
    int waiters;            // number of threads waiting on 
                            // a cvar (one for every condition)
    semaphore lock;         // controls entry to monitor 
    semaphore next;         // suspends this thread when signaling another
    int nextCount;          // number of threads suspended 
}                           //                     on next
Monitor::Monitor {
   cvar = 0;    // Nobody waiting on condition variable
   lock = FREE; // Nobody in the monitor
   next = nextCount = waiters = 0;
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Implementing Monitors with Semaphores
ConditionWait() {             // Condition Wait
   waiters += 1;
   if (nextCount > 0) 
      next.Signal();   // resume a suspended thread
   else 
       lock.Signal();  // allow a new thread in the monitor
   cvar.wait();        // wait on the condition
   waiters -= 1;  
}
ConditionSignal(){            // Condition Signal
   if (waiters > 0) {    // don't signal cvar if nobody is waiting
      nextCount += 1;
      cvar.Signal();         // Semaphore Signal
      next.Wait();           // Semaphore Wait
      nextCount -= 1;
    }
}
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Using the Monitor Class
// Wrapper code for all methods on the shared data
Monitor::someMethod () {
   lock.Wait();        // lock the monitor OR use synchronized
   <ops on data and calls to ConditionWait() and ConditionSignal()>
   if (nextCount > 0) 
      next.Signal();   // resume a suspended thread
   else 
      lock.Signal();   // allow a new thread into the monitor
}

• Is this Hoare semantics or Mesa semantics? What would you 
change to provide the other semantics?
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Summary
• Monitor wraps operations with a mutex

• Condition variables release mutex temporarily
• Java has monitors built into the language

• C++ does not provide a monitor construct, but monitors can be  
implemented by following the monitor rules for acquiring and 
releasing locks

• It is possible to implement monitors with semaphores
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