
Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Last Class: OS and Computer Architecture

• CPU, memory, I/O devices, network card, system bus

Network
card

System bus

1 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Last Class: OS and Computer Architecture

OS Service Hardware Support
Protection Kernel/user mode, protected

instructions, base/limit registers

Interrupts Interrupt vectors

System calls Trap instructions and trap vectors

I/O Interrupts and memory mapping

Scheduling, error recovery,
accounting

Timer

Syncronization Atomic instructions

Virtual memory Translation look-aside buffers

2

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Today: OS Structures & Services
• Introduce the organization and components in an OS.
• OS Components

– Processes
– Synchronization
– Memory & Secondary Storage Management
– File Systems
– I/O Systems
– Distributed Systems

• Four example OS organizations
– Monolithic kernel
– Layered architecture
– Microkernel
– Modular

3 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

From the Architecture to the OS to the User
From the Architecture to the OS to the User: Architectural resources, OS

management, and User Abstractions.

Hardware abstraction Example OS Services User abstraction

Processor Process management, Scheduling, Traps,
protection, accounting, synchronization

Process

Memory Management, Protection, virtual memory Address spaces

I/O devices Concurrency with CPU, Interrupt
handling

Terminal, mouse, printer,
system calls

File System File management, Persistence Files

Distributed systems Networking, security, distributed file
system

Remote procedure calls,
network file system

4

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Processes

• The OS manages a variety of activities:
– User programs
– Batch jobs and command scripts
– System programs: printers, spoolers, name servers, file servers, network

listeners, etc.
• Each of these activities is encapsulated in a process.
• A process includes the execution context (PC, registers, VM,

resources, etc.) and all the other information the activity needs to
run.

• A process is not a program. A process is one instance of a program
in execution. Many processes can be running the same program.
Processes are independent entities.

5 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

OS and Processes

• The OS creates, deletes, suspends, and resumes processes.

• The OS schedules and manages processes.

• The OS manages inter-process communication and
synchronization.

• The OS allocates resources to processes.

6

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Synchronization Example:
Banking transactions

• Cooperating processes on a single account: ATM machine
transaction, balance computation, Monthly interest computation
and addition.

• All of the processes are trying to access the same account
simultaneously. What can happen?

7 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Memory & Secondary Storage Management

Main memory
• is the direct access storage for the CPU.
• Processes must be stored in main memory to execute.

• The OS must
– allocate memory space for processes,
– deallocate memory space,
– maintain the mappings from virtual to physical memory (page tables),
– decide how much memory to allocate to each process, and when a process

should be removed from memory (policies).

8

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

File System
Secondary storage devices (disks) are too crude to use directly for

long term storage.

• The file system provides logical objects and operations on these
objects (files).

• A file is the long-term storage entity: a named collection of
persistent information that can be read or written.

• File systems support directories which contain the names of files
and other directories along with additional information about the
files and directories (e.g., when they were created and last
modified).

9 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

File System Management

• The File System provides file management, a standard interface to
– create and delete files and directories
– manipulate (read, write, extend, rename, copy, protect) files and directories
– map files onto secondary storage

• The File System also provides general services such as backups,
maintaining mapping information, accounting, and quotas.

10

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Secondary Storage (disk)
• Secondary Storage = persistent memory (endures system failures)
• Low-level OS routines: responsible for low-level disk functions,

such as scheduling of disk operations, head movement, and error
handling.
– These routines may also be responsible for managing the disk space (for

example, keeping track of the free space).
– The line between managing the disk space and the file system is very fuzzy,

these routines are sometimes in the file system.

• Example: A program executable is stored in a file on disk. To
execute a program, the OS must load the program from disk into
memory.

11 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

I/O Systems
The I/O system supports communication with external devices:

terminal, keyboard, printer, mouse, network card

The I/O System:
• Supports buffering and spooling of I/O
• Provides a general device driver interface, hiding the differences

among devices, often mimicking the file system interface
• Provides device driver implementations specific to individual

devices.

12

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Distributed Systems
• A distributed system is a collection of processors that do not

share memory or a clock.
– To use non-local resources in a distributed system, processes must

communicate over a network,
– The OS must provide additional mechanisms for dealing with
– failures and deadlock that are not encountered in a centralized system.

• The OS can support a distributed file system on a distributed
system.

– Users, servers, and storage devices are all dispersed among the various
sites.

– The OS must carry out its file services across the network and manage
multiple, independent storage devices.

13 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

System Calls

• Programming interface to the services provided by the OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs via a high-level Application

Program Interface (API) rather than direct system call use
• Three most common APIs are Win32 API for Windows, POSIX

API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)

• Why use APIs rather than system calls?

14

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Example of Standard API

• Consider the ReadFile() function in the
• Win32 API—a function for reading from a file

• A description of the parameters passed to ReadFile()
– HANDLE file—the file to be read
– LPVOID buffer—a buffer where the data will be read into and written from
– DWORD bytesToRead—the number of bytes to be read into the buffer
– LPDWORD bytesRead—the number of bytes read during the last read
– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

15 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

System Call Implementation

• Typically, a number associated with each system call
– System-call interface maintains a table indexed according to these numbers

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values

• The caller need know nothing about how the system call is
implemented
– Just needs to obey API and understand what OS will do as a result call
– Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into libraries
included with compiler)

16

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

API – System Call – OS Relationship

17 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Standard C Library Example
• C program invoking printf() library call, which

calls write() system call

18

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call
– Exact type and amount of information vary according to OS and call

• Three general methods used to pass parameters to the OS
– Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers
– Parameters stored in a block, or table, in memory, and address of block

passed as a parameter in a register
• This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by the program and popped off
the stack by the operating system

– Block and stack methods do not limit the number or length of parameters
being passed

19 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Examples of Windows and Unix System Calls

20

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

One Basic OS Structure

• The kernel is the protected part of the OS that runs in
kernel mode, protecting the critical OS data structures
and device registers from user programs.

• Debate about what functionality goes into the kernel
(above figure: UNIX)

21 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Layered OS design

Layer N: uses layer N-1 and provides new functionality to N+1
• Advantages: modularity, simplicity, portability, ease of

design/debugging
• Disadvantage - communication overhead between layers,

extra copying, book-keeping

User programs

Device drivers
Virtual memory

I/O channel
Cpu scheduler

Hardware

22

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Microkernel

• Small kernel that provides communication (message
passing) and other basic functionality
• other OS functionality implemented as user-space processes

23 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Microkernel Features
• Goal: to minimize what goes in the kernel (mechanism, no

policy), implementing as much of the OS in User-Level processes
as possible.

• Advantages
– better reliability, easier extension and customization
– mediocre performance (unfortunately)

• First Microkernel was Hydra (CMU '70). Current systems include
Chorus (France) and Mach (CMU).

24

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Mac OS X - hybrid approach

• Layered system: Mach microkernel (mem, RPC, IPC) + BSD
(threads, CLI, networking, filesystem) + user-level services (GUI)

25 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Modules

• Most modern operating systems implement kernel
modules
– Uses object-oriented approach
– Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

26

Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Solaris Modular Approach

27 Computer Science Lecture 3, page Computer Science CS377: Operating Systems

Summary

• Big Design Issue: How do we make the OS efficient, reliable, and
extensible?

• General OS Philosophy: The design and implementation of an
OS involves a constant tradeoff between simplicity and
performance. As a general rule, strive for simplicity except when
you have a strong reason to believe that you need to make a
particular component complicated to achieve acceptable
performance (strong reason = simulation or evaluation study)

28

