
Computer Science Lecture 24, page 1 Computer Science CS377: Operating Systems

Last Class: Network Overview!
•  =>Processes in a distributed system all communicate via a

message exchange.
 Physical reality: packets Abstraction: messages
 limited size arbitrary size
 unordered (sometimes) ordered
 unreliable reliable
 machine to machine process to process (routing)
 asynchronous synchronous
 insecure secure

•  Unless otherwise stated, assume a reliable end-to-end message
delivery.

Computer Science Lecture 24, page 2 Computer Science CS377: Operating Systems

Today: Distributed Systems!

What gets harder when we move from a stand alone system to a
distributed environment?

•  resource sharing
•  timing (e.g., synchronization)
•  critical sections
•  deadlock detection and recovery
•  failure recovery

Computer Science Lecture 24, page 3 Computer Science CS377: Operating Systems

Resource Sharing!
There are many mechanisms for sharing (hardware, software, data)

resources.

•  Data Migration: moving the data around

•  Computation Migration: move the computation to the data
•  Job Migration: moving the job (computation and data) or part

of the job

=> The fundamental tradeoff in resource sharing is to
complete user instructions as fast and as cheaply as
possible. (Fast and cheap are usually incompatible.)

Computer Science Lecture 24, page 4 Computer Science CS377: Operating Systems

Computation versus Communication!
•  If communication is fast and cheap, we can utilize all the

resources in the distributed environment.
•  If communication is slow and expensive, we should do most

processing locally.
•  Reality is usually in the middle somewhere.

=> we need a quantitative analysis to decide where the
cutoffs are.

Computer Science Lecture 24, page 5 Computer Science CS377: Operating Systems

Data Migration!
Data Migration may occur when process at site A accesses a file at

site B.
1.  Copy file B to process A

•  Costly if the file is large
•  Data must be converted to A's data format
•  Multiple copies can cause consistency problems
•  All subsequent accesses at A are local

2.  Keep file at B, access file remotely from A
•  Saves file transfer cost
•  Converting the file from A's format to B's may be difficult to do in pieces
•  Single copy of file, so no consistency problems
•  Single “file service center” for file at B may be a performance bottleneck

Computer Science Lecture 24, page 6 Computer Science CS377: Operating Systems

Computation Migration!
Computation Migration may occur when it is more efficient to

transfer the computation itself rather than data.
Example: a small program which produces a short summary of a

large file, say “wc” or a database query

•  Remote Procedure Calls (RPC): suppose A wants to access file
at site B. B provides a predefined process.

 A sends a message to the predefined process at B, which performs the
 requested action, and sends the result back to A.

Computer Science Lecture 24, page 7 Computer Science CS377: Operating Systems

Job Migration!
•  Job Migration: perform the job (or parts of the job) at remote

sites by moving the data and computation.
–  Load balancing: even workload across the distributed system
–  Computational speedup: concurrent (parallel) execution of parts of the

job.
–  Hardware preference: job may match a given piece of hardware

somewhere in the system.
–  Software preference: job may require software only available on a

specific site. For example, site specific license of expensive software.
–  User interaction: may want to hide migration from the user. For example,

in load balancing. May want the user to specify migration (hardware/
software preferences)

Computer Science Lecture 24, page 8 Computer Science CS377: Operating Systems

Client/Server Model!
•  One of the most common models for structuring distributed

computation is by using the client/server paradigm.
–  A server is a process or collection of processes that provide a service, e.g.,

name service, file service, database service, etc.
–  The server may exist on one or more nodes.
–  A client is a program that uses the service.
–  A client first binds to the server, i.e., locates it in the network and

establishes a connection.
–  The client then sends the server a request to perform some action. The

server sends back a response.
–  RPC is one common way this structure is implemented.

Computer Science Lecture 24, page 9 Computer Science CS377: Operating Systems

Remote Procedure Call!
Basic idea:
•  Servers export procedures for some set of clients to call.
•  To use the server, the client does a procedure call.
•  OS manages the communication.

Computer Science Lecture 24, page 10 Computer Science CS377: Operating Systems

Remote Procedure Call:
Implementation Issues!

For each procedure on which we want to support RPC:

•  The RPC mechanism uses the procedure signature (number and
type of arguments and return value)

–  to generate a client stub that bundles up the RPC arguments
and sends it off to the server, and

–  to generate the server stub that unpacks the message, and
makes the procedure call.

Computer Science Lecture 24, page 11 Computer Science CS377: Operating Systems

Remote Procedure Call:
Implementation Issues!

Client Stub:

 build message
 send message
 wait for response
 unpack reply
 return result

Server Stub:
 create threads

 loop
 wait for a command
 unpack request parameters
 call procedure with thread
 build reply with result(s)
 send reply
 end loop

Comparison between RPC and a regular procedure call
•  Name of procedure

•  Parameters

•  Result

•  Return address

Computer Science Lecture 24, page 12 Computer Science CS377: Operating Systems

Remote Procedure Call!
•  How does the client know the right port?

–  The binding can be static - fixed at compile time.
–  Or the binding can be dynamic - fixed at runtime.

•  In most RPC systems, dynamic binding is performed using a
name service.

–  When the server starts up, it exports its interface and identifies itself to a
network name server

–  The client, before issuing any calls, asks the name service for the location
of a server whose name it knows and then establishes a connection with
the server.

Computer Science Lecture 24, page 13 Computer Science CS377: Operating Systems

Example: Remote Method
Invocation (RMI) in Java!

•  Java provides the following classes/interfaces:
–  Naming: class that provides the calls to communicate with the remote

object registry
–  public static void bind(String name, Remote obj) - Binds a server to a name.
–  public static Remote lookup(String name) - Returns the server object that

corresponds to a name.

•  UnicastRemoteObject: supports references to non-replicated
remote objects using TCP, exports the interface automatically
when the server object is constructed

•  Java provides the following tools:
–  rmiregistry server-side name server
–  rmic: given the server interface, generates client and server stubs that

create and interpret packets

Computer Science Lecture 24, page 14 Computer Science CS377: Operating Systems

Example: Server in Java!
•  Server

–  Defines an interface listing the signatures of methods the server will
satisfy

–  Implements each of the methods in the interface
–  Main program for server:

•  Creates one or more server objects - normal constructor call where
the object being constructed is a subclass of RemoteObject

•  Registers the objects with the remote object registry

•  Client
–  Looks up the server in the remote object registry
–  Uses normal method call syntax for remote methods
–  Should handle RemoteException

Computer Science Lecture 24, page 15 Computer Science CS377: Operating Systems

Example: Hello World Server
Interface!

Declare the methods that the server provides:

package examples.hello;

// All servers must extend the Remote interface.
public interface Hello extends java.rmi.Remote {

 // Any remote method might throw RemoteException.
 // Indicates network failure.
 String sayHello() throws java.rmi.RemoteException;
}

Computer Science Lecture 24, page 16 Computer Science CS377: Operating Systems

Example: Hello World Server!
package examples.hello;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloImpl extends UnicastRemoteObject implements Hello
{
 public HelloImpl() throws RemoteException {
 // The superclass constrctor exports the interface and gets a port
 super();
 }

 public String sayHello() throws RemoteException {
 // This is the "service" provided.
 return "Hello World!";
 }

Computer Science Lecture 24, page 17 Computer Science CS377: Operating Systems

Example: Hello World Server
(contd)!

public static void main(String args[])
 {
 // Create and install a security manager
 System.setSecurityManager(new RMISecurityManager());

 // Construct the server object.
 HelloImpl obj = new HelloImpl();

 // Register the server with the name server.
 Naming.rebind("//myhost/HelloServer", obj);
 }
}

Computer Science Lecture 24, page 18 Computer Science CS377: Operating Systems

Example: Hello World Client!
package examples.hello;

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet.Applet {
 String message = "";

 // The init method begins the execution of the applet on the client
 // machine that is viewing the Web page containing the reference
 // to the applet.
 public void init() {
 try {
 // Looks up the server using the name server on the host that
 // the applet came from.
 Hello obj = (Hello)Naming.lookup(
 "//" + getCodeBase().getHost() + "/HelloServer");

Computer Science Lecture 24, page 19 Computer Science CS377: Operating Systems

Example: Hello World Client (contd)!
 // Calls the sayHello method on the remote object.

 message = obj.sayHello();
 } catch (RemoteException e) {
 System.out.println("HelloApplet RemoteException caught");
 }
 }

 public void paint(Graphics g) {
 // The applet will write the string returned by the remote method
 // call on the display.
 g.drawString(message, 25, 50);
 }
}

Computer Science Lecture 24, page 20 Computer Science CS377: Operating Systems

Summary!
•  Data, computation, job migration
•  Client-Server Model
•  Mechanism: RPC

–  Most common model for communications in distributed applications.
–  RPC is essentially language support for distributed programming.
–  Relies on a stub compiler to automatically produce client/server stubs

from the signatures.
–  RPC is commonly used even on a single node for communication between

applications running in different address spaces.

