
CMPSCI 377 Operating Systems Spring 2010

Lecture 19: April 1
Lecturer: Prashant Shenoy TA: Vimal Mathew & Tim Wood

19.1 How Disks Work

A typical hard disk drive is composed of one or more circular platters and a disk head that can read data
from the magnetic material used to build each platter. The surface of each platter is divided into concentric
rings (like the rings on a tree), known as tracks (or cylinders. Each track is split into sectors also known
as blocks, which are the minimum read or write unit on the disk. The disk platter is constantly spinning,
and the disk head can be moved up or down to reach a specific track on the platter. These mechanical
operations are the primary causes of disk overheads—the latency of a disk access is the amount of time to
initiate a disk transfer of 1 byte and is composed of the seek time and rotational time. The seek time is
how long it takes for the head to reach the proper track, and the rotational time is how long it takes for the
correct sector to rotate under the head so that it can be read. In addition to latency, the main performance
characteristic of disks is the bandwidth that they can achieve once the transfer has been initiated, typically
in megabytes per second.

19.2 Organizing Data on Disk

In the previous lecture we discussed how a file is composed of multiple data blocks. When a file is stored to
disk, a mapping must be kept that translates the block of a particular file to a precise location on the disk.
A disk location has three parts to its address, the platter number, the cylinder, and the sector. The disk
and file system need a way to maintain these mappings using an efficient data structure.

A file descriptor is the structure on a disk that stores information about each file. The file descriptor must
specify where on disk the different blocks are stored, as well as other attribute information described in the
previous lecture. There are many approaches to organizing files on disk. In general, the on disk layout is
optimized for the following common characteristics

• Most files are small

• Most disk space is taken up by a small number of large files

• I/O operations will target both small and large files.

These requirements mean that the cost for accessing each file must be low, since a typical disk has a very
large number of small files. However, the system must also provide good performance for large files, as they
often consume a large portion of the total disk space.

19.2.1 Contiguous Allocation

In a Contiguous Allocation disk layout the OS maintains an ordered list of all disk blocks that are currently
free. When a file is created, the OS allocates it a contiguous chunk of free blocks for it to use. With this

19-1



19-2 Lecture 19: April 1

simple scheme, the file descriptor only needs to know the start location and length of a file in order to find all
of its disk blocks. This system is very simple and can provide very good performance when making sequential
reads to a file since all of its disk blocks are laid out in contiguous sectors, but it runs into problems when the
size of files change over time. When files are growing or shrinking, this approach can exhibit the same type of
fragmentation that we saw with contiguous memory allocation schemes—small groups of sectors can appear
between files that are not large enough to be used by any new files. As a result, Contiguous Allocation disk
layouts are not commonly used in modern systems.

19.2.2 Linked Files

A Linked File disk layout each file is stored similar to a linked list data structure. The OS again keeps a
list of all free sectors, and when a new file is created a file descriptor is made with a pointer to the first
sector for its data. At the end of each sector, an additional pointer is kept to the next sector used by the
file. This is a much more flexible scheme since files can grow to be very long by simply extending the chain
of pointers, and it eliminates fragmentation since disk sectors for a file no longer have to be contiguous.
Sequential disk reads can still be performed reasonably efficiently since after reading a sector the OS knows
the address to the next sector, but they may require a large number of disk seeks (one per sector) if none
of the sectors are contiguous. This approach performs very poorly when a process makes random reads to
arbitrary locations within a file, rather than just sequential ones. To handle a random read in a Linked File
based system, the OS still must start at the first block and read through every single block until it eventually
reaches the desired block. For example, if you had a 1GB file and only wanted to read the very last block
in the file (typically the last 1KB), the OS would still need to sequentially read the full 1GB file before it
could return the data!

19.2.3 Indexed Files

An Indexed File layout tries to support good performance for both sequential and random accesses by
maintaining a special index within the file descriptor. This index is simply an array containing pointers
to each of the disk blocks used by the file. This approach is quite efficient since files do not need to be
contiguous, but random reads can still be performed efficiently by quickly looking up block addresses in the
index. However, the system requires that a maximum file size be set ahead of time since each file must have
a fixed number of entries in its index. It also can lead to large numbers of seeks if data is not placed in
contiguous sectors.

19.2.4 Multilevel Indexed Files

A Multilevel Index can be used to eliminate the maximum file constraint of regular Indexed File layouts. In
this case, the index maintained for each file contains multiple different types of entries: (1) pointers to data
blocks (as in the previous scheme), (2) pointers to other index blocks, or (3) pointers to blocks containing
more pointers to index blocks. For example, a file may be created with an index with 14 entries. The first 12
entries point directly to data blocks—an ordinary small file would only require the use of these pointers. The
13th entry would be a pointer to a second index (with the same structure of 14 entries), providing a level
of indirection to additional data blocks and index pointers. Finally, the 14th entry would provide a second
level of indirection by pointing to a block filled with pointers to other index blocks. Having these extra levels
of indirection means that the index can accomodate very large files. However, it produces a performance
difference for random reads to small and large files. A random read to a small file may not require any
extra accesses, but reading from a large file could require jumping between several levels of indirection. This
solution also does not try to place data in contiguous sectors, potentially leading to large numbers of seeks.



Lecture 19: April 1 19-3

19.3 Free-Space Management

The OS needs a way to keep track of which blocks are used or free for all of the disk layouts described above.
This is a similar problem to maintaing a free-space list for main memory described in previous lectures. The
goal of free-space management is to be able to quickly find free blocks on disk, and to be able to efficiently
mark blocks as free or in use. A simple approach is to use a bitmap. A bitmap is a string of bits where
each bit represents a block on disk. If the bit is set to 1, then the block si free, if it is 0, then the block
has already been allocated. Using a bitmap makes it very easy to check if a particular block is free—the
address of the block can be used to lookup the appropriate region in the bitmap and bit operations can be
used to find out if the block is free or to mark it as used. One problem with using a bitmap approach is that
it can require a very large amount of memory. Since 1 bit is required for every block on disk, larger disks
require larger bitmaps. If a system uses 512 Byte disk blocks and the disk holds 2GB, then the bitmap must
have 4,000,000 bits in it, or 500,000 bytes. Disks today can be hundreds of GB or more, which could require
substantial amounts of memory.

A second big problem with bitmaps is that it can be very slow at finding a free block, since the OS may need
to scan a large part of the bitmap before a ”1” entry is found. To reduce the cost of finding free blocks, a
linked list based approach can be used instead. In this case, the list of free blocks is maintained as a linked
list in kernel memory. This can make finding free blocks must faster, but can require even larger amounts
of memory to maintain the full data structure.


