Where we are in the course

* Discussed:
— Processes & Threads
— CPU Scheduling
— Synchronization & Deadlock
e Next:
— Memory Management
* Remaining:
— File Systems and 1/O Storage
— Distributed Systems

5§ Computer Science (CS377: Operating Systems Lecture 13, page 1

Memory Management

* Where is the executing process?

* How do we allow multiple processes to use main memory
simultaneously?

* What is an address and how is one interpreted?

5 Computer Science (CS377: Operating Systems Lecture 13, page 2

Background: Computer Architecture

CPU

Virtual

(w(ﬁ
Processor
Cache = —
) t (< di.@ disk)
- —
A(\Il(il{(ual Trap) .
ess
Data
TLB/MMU

Disk
Controller
Control

Physical
Address

—

Memory Controller

System Bus

Memory

* Program executable starts out on disk
* The OS loads the program into memory

* CPU fetches instructions and data from memory while executing
the program

: Computer Science (CS377: Operating Systems Lecture 13, page 3

Memory Management: Terminology

Memory
(0}
0 400
A
Virtual 50:; 2(1)80 Physical
Addresses C Addresses
300 1400
0 2000
B
400 2400
Segments

* Segment: A chunk of memory assigned to a process.
* Physical Address: a real address in memory

* Virtual Address: an address relative to the start of a process's
address space.

omputer Science (S377: Operating Systems Lecture 13, page 4

Where do addresses come from?

How do programs generate instruction and data addresses?

« Compile time: The compiler generates the exact physical location
in memory starting from some fixed starting position k. The OS
does nothing.

* Load time: Compiler generates an address, but at load time the
OS determines the process' starting position. Once the process
loads, it does not move in memory.

* Execution time: Compiler generates an address, and OS can place
it any where it wants in memory.

omputer Science (S377: Operating Systems Lecture 13, page 5

Uniprogramming

* OS gets a fixed part of memory (highest memory in DOS).
* One process executes at a time.

* Process is always loaded starting at address O.

* Process executes in a contiguous section of memory.

* Compiler can generate physical addresses.

¢ Maximum address = Memory Size - OS Size

* OS is protected from process by checking addresses used by
process.

omputer Science (CS377: Operating Systems Lecture 13, page 6

Uniprogramming

Memory 0 Memory 0 Memory
B
A
C
2200 2200 2200
05 2400 OS5 2400 05— 2400

Processes A, B, C

=> Simple, but does not allow for overlap of I/O and computation.

Computer Science (CS377: Operating Systems Lecture 13, page 7

Multiple Programs Share Memory

Transparency:
— We want multiple processes to coexist in memory.
— No process should be aware that memory is shared.

— Processes should not care what physical portion of memory they are
assigned to.

Safety:
— Processes must not be able to corrupt each other.
— Processes must not be able to corrupt the OS.
Efficiency:

— Performance of CPU and memory should not be degraded badly due to
sharing.

Computer Science (CS377: Operating Systems Lecture 13, page 8

Relocation

Memory 0 Memory
B B
400 400
A A
900 C 900
[c] — 1200
2000 2000
oS oS

2400 2400

Put the OS in the highest memory.

* Assume at compile/link time that the process starts at 0 with a maximum
address = memory size - OS size.

* Load a process by allocating a contiguous segment of memory in which the
process fits.

The first (smallest) physical address of the process is the base address and the
largest physical address the process can access is the /imit address.

omputer Science (S377: Operating Systems Lecture 13, page 9

Relocation

e Static Relocation:

— at load time, the OS adjusts the addresses in a process to reflect its position in
memory.

— Once a process is assigned a place in memory and starts executing it, the OS cannot
move it. (Why?)

* Dynamic Relocation:

— hardware adds relocation register (base) to virtual address to get a physical address;
— hardware compares address with limit register (address must be less than base).

— If'test fails, the processor takes an address trap and ignores the physical address.

CPU logical address
relocation @
register @_‘ limit
\ register
1

trap: addressing error

physical address

§ Computer Science (CS377: Operating Systems Lecture 13, page 10

Dynamic Relocation

* Advantages:
— OS can easily move a process during execution.
— OS can allow a process to grow over time.
— Simple, fast hardware: two special registers, an add, and a compare.

* Disadvantages:
— Slows down hardware due to the add on every memory reference.
— Can't share memory (such as program text) between processes.
— Process is still limited to physical memory size.

— Degree of multiprogramming is very limited since all memory of all active
processes must fit in memory.

— Complicates memory management.

Computer Science (CS377: Operating Systems Lecture 13, page 11

Relocation: Properties

* Transparency: processes are largely unaware of sharing.
* Safety: each memory reference is checked.

« Efficiency: memory checks and virtual to physical address
translation are fast as they are done in hardware, BUT if a process
grows, it may have to be moved which is very slow.

Computer Science (CS377: Operating Systems Lecture 13, page 12

Memory Management: Memory
Allocation

As processes enter the system, grow, and terminate, the OS must
keep track of which memory is available and utilized.

0 0 0 0
oS oS oS oS
400 400 400 400
A A A
9200 900 900 900
B — — D — D
1500 1500
1800 1800 1800 1800
C C C C
2100 2100 2100 2100
2400 2400 2400 2400
B terminates Allocate D A terminates

* Holes: pieces of free memory (shaded above in figure)

* @Given anew process, the OS must decide which hole to use for
the process

omputer Science (CS377: Operating Systems Lecture 13, page 13

Memory Allocation Policies

 First-Fit: allocate the first one in the list in which the process fits.
The search can start with the first hole, or where the previous first-
fit search ended.

« Best-Fit: Allocate the smallest hole that is big enough to hold the
process. The OS must search the entire list or store the list sorted
by size hole list.

* Worst-Fit: Allocate the largest hole to the process. Again the OS
must search the entire list or keep the list sorted.

» Simulations show first-fit and best-fit usually yield better storage
utilization than worst-fit; first-fit is generally faster than best-fit.

omputer Science (S377: Operating Systems Lecture 13, page 14

Fragmentation

« External Fragmentation

— Frequent loading and unloading programs causes free space to be broken

into little pieces

— External fragmentation exists when there is enough memory to fit a process

in memory, but the space is not contiguous

— 50-percent rule: Simulations show that for every 2N allocated blocks, N

blocks are lost due to fragmentation (i.e., 1/3 of memory space is wasted)

— We want an allocation policy that minimizes wasted space.

* Internal Fragmentation:

— Consider a process of size 8846 bytes and a block of size 8848 bytes
=1t is more efficient to allocate the process the entire 8848 block than it is to

keep track of 2 free bytes

— Internal fragmentation exists when memory internal to a partition that is

wasted

Computer Science

CS377: Operating Systems

Compaction

° HOW much memory IS moved?Alternative 2:

* How big a block is created?
* Any other choices?

Computer Science

0

Lecture 13, page 15

(O] (O] (0N
400 400
E D D
needs 600) 900 1000
D . C . C
Alternative 1: 1300
1500 E
1800
C
2100
2400 2400
Compaction —
0 0
[0 oS (O]
400 400
E D D
needs 600) 900 1000
D E
1500
c 1800 1800
C C

CS377: Operating Systems

2100
2400

2100

2400

400

1000
1300

1900

2400

400

1000

1600
1800
2100
2400

Lecture 13, page 16

Swapping

Roll out a process to disk, releasing all the memory it holds.

When process becomes active again, the OS must reload it in
memory.

— With static relocation, the process must be put in the same position.

— With dynamic relocation, the OS finds a new position in memory for the
process and updates the relocation and limit registers.

If swapping is part of the system, compaction is easy to add.
How could or should swapping interact with CPU scheduling?

Computer Science (CS377: Operating Systems Lecture 13, page 17

Summary

Processes must reside in memory in order to execute.

Processes generally use virtual addresses which are translated into
physical addresses just before accessing memory.

Segmentation allows multiple processes to share main memory,
but makes it expensive for processes to grow over time.

Swapping allows the total memory being used by all processes to
exceed the amount of physical memory available, but increases
context switch time.

5 Computer Science (CS377: Operating Systems Lecture 13, page 18

