
Computer Science Lecture 13, page 1 Computer Science CS377: Operating Systems

Where we are in the course!
•  Discussed:

–  Processes & Threads
–  CPU Scheduling
–  Synchronization & Deadlock

•  Next:
–  Memory Management

•  Remaining:
–  File Systems and I/O Storage
–  Distributed Systems

Computer Science Lecture 13, page 2 Computer Science CS377: Operating Systems

Memory Management!
•  Where is the executing process?

•  How do we allow multiple processes to use main memory
simultaneously?

•  What is an address and how is one interpreted?

Computer Science Lecture 13, page 3 Computer Science CS377: Operating Systems

Background: Computer Architecture!

•  Program executable starts out on disk
•  The OS loads the program into memory
•  CPU fetches instructions and data from memory while executing

the program

Computer Science Lecture 13, page 4 Computer Science CS377: Operating Systems

Memory Management: Terminology!

•  Segment: A chunk of memory assigned to a process.
•  Physical Address: a real address in memory
•  Virtual Address: an address relative to the start of a process's

address space.

Computer Science Lecture 13, page 5 Computer Science CS377: Operating Systems

Where do addresses come from?!
How do programs generate instruction and data addresses?
•  Compile time: The compiler generates the exact physical location

in memory starting from some fixed starting position k. The OS
does nothing.

•  Load time: Compiler generates an address, but at load time the
OS determines the process' starting position. Once the process
loads, it does not move in memory.

•  Execution time: Compiler generates an address, and OS can place
it any where it wants in memory.

Computer Science Lecture 13, page 6 Computer Science CS377: Operating Systems

Uniprogramming!
•  OS gets a fixed part of memory (highest memory in DOS).
•  One process executes at a time.
•  Process is always loaded starting at address 0.
•  Process executes in a contiguous section of memory.
•  Compiler can generate physical addresses.
•  Maximum address = Memory Size - OS Size
•  OS is protected from process by checking addresses used by

process.

Computer Science Lecture 13, page 7 Computer Science CS377: Operating Systems

Uniprogramming!

! Simple, but does not allow for overlap of I/O and computation.

Computer Science Lecture 13, page 8 Computer Science CS377: Operating Systems

Multiple Programs Share Memory!
Transparency:

–  We want multiple processes to coexist in memory.
–  No process should be aware that memory is shared.
–  Processes should not care what physical portion of memory they are

assigned to.

Safety:
–  Processes must not be able to corrupt each other.
–  Processes must not be able to corrupt the OS.

Efficiency:
–  Performance of CPU and memory should not be degraded badly due to

sharing.

Computer Science Lecture 13, page 9 Computer Science CS377: Operating Systems

Relocation!

•  Put the OS in the highest memory.
•  Assume at compile/link time that the process starts at 0 with a maximum

address = memory size - OS size.
•  Load a process by allocating a contiguous segment of memory in which the

process fits.
•  The first (smallest) physical address of the process is the base address and the

largest physical address the process can access is the limit address.

Computer Science Lecture 13, page 10 Computer Science CS377: Operating Systems

Relocation!
•  Static Relocation:

–  at load time, the OS adjusts the addresses in a process to reflect its position in
memory.

–  Once a process is assigned a place in memory and starts executing it, the OS cannot
move it. (Why?)

•  Dynamic Relocation:
–  hardware adds relocation register (base) to virtual address to get a physical address;
–  hardware compares address with limit register (address must be less than base).
–  If test fails, the processor takes an address trap and ignores the physical address.

Computer Science Lecture 13, page 11 Computer Science CS377: Operating Systems

Dynamic Relocation!
•  Advantages:

–  OS can easily move a process during execution.
–  OS can allow a process to grow over time.
–  Simple, fast hardware: two special registers, an add, and a compare.

•  Disadvantages:
–  Slows down hardware due to the add on every memory reference.
–  Can't share memory (such as program text) between processes.
–  Process is still limited to physical memory size.
–  Degree of multiprogramming is very limited since all memory of all active

processes must fit in memory.
–  Complicates memory management.

Computer Science Lecture 13, page 12 Computer Science CS377: Operating Systems

Relocation: Properties!
•  Transparency: processes are largely unaware of sharing.

•  Safety: each memory reference is checked.

•  Efficiency: memory checks and virtual to physical address
translation are fast as they are done in hardware, BUT if a process
grows, it may have to be moved which is very slow.

Computer Science Lecture 13, page 13 Computer Science CS377: Operating Systems

Memory Management: Memory
Allocation!

As processes enter the system, grow, and terminate, the OS must
keep track of which memory is available and utilized.

•  Holes: pieces of free memory (shaded above in figure)
•  Given a new process, the OS must decide which hole to use for

the process

Computer Science Lecture 13, page 14 Computer Science CS377: Operating Systems

Memory Allocation Policies!
•  First-Fit: allocate the first one in the list in which the process fits.

The search can start with the first hole, or where the previous first-
fit search ended.

•  Best-Fit: Allocate the smallest hole that is big enough to hold the
process. The OS must search the entire list or store the list sorted
by size hole list.

•  Worst-Fit: Allocate the largest hole to the process. Again the OS
must search the entire list or keep the list sorted.

•  Simulations show first-fit and best-fit usually yield better storage
utilization than worst-fit; first-fit is generally faster than best-fit.

Computer Science Lecture 13, page 15 Computer Science CS377: Operating Systems

Fragmentation!
•  External Fragmentation

–  Frequent loading and unloading programs causes free space to be broken
into little pieces

–  External fragmentation exists when there is enough memory to fit a process
in memory, but the space is not contiguous

–  50-percent rule: Simulations show that for every 2N allocated blocks, N
blocks are lost due to fragmentation (i.e., 1/3 of memory space is wasted)

–  We want an allocation policy that minimizes wasted space.

•  Internal Fragmentation:
–  Consider a process of size 8846 bytes and a block of size 8848 bytes
! it is more efficient to allocate the process the entire 8848 block than it is to

keep track of 2 free bytes
–  Internal fragmentation exists when memory internal to a partition that is

wasted

Computer Science Lecture 13, page 16 Computer Science CS377: Operating Systems

Compaction!

•  How much memory is moved?
•  How big a block is created?
•  Any other choices?

Computer Science Lecture 13, page 17 Computer Science CS377: Operating Systems

Swapping!
•  Roll out a process to disk, releasing all the memory it holds.
•  When process becomes active again, the OS must reload it in

memory.
–  With static relocation, the process must be put in the same position.
–  With dynamic relocation, the OS finds a new position in memory for the

process and updates the relocation and limit registers.

•  If swapping is part of the system, compaction is easy to add.
•  How could or should swapping interact with CPU scheduling?

Computer Science Lecture 13, page 18 Computer Science CS377: Operating Systems

Summary!
•  Processes must reside in memory in order to execute.
•  Processes generally use virtual addresses which are translated into

physical addresses just before accessing memory.
•  Segmentation allows multiple processes to share main memory,

but makes it expensive for processes to grow over time.
•  Swapping allows the total memory being used by all processes to

exceed the amount of physical memory available, but increases
context switch time.

