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Where we are in the course!
•  Discussed: 

–  Processes & Threads 
–  CPU Scheduling 
–  Synchronization & Deadlock 

•  Next: 
–  Memory Management 

•  Remaining: 
–  File Systems and  I/O Storage 
–  Distributed Systems 
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Memory Management!
•  Where is the executing process? 

•  How do we allow multiple processes to use main memory 
simultaneously? 

•  What is an address and how is one interpreted? 
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Background: Computer Architecture!

•  Program executable starts out on disk 
•  The OS loads the program into memory 
•  CPU fetches instructions and data from memory while executing 

the program 
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Memory Management: Terminology!

•  Segment: A chunk of memory assigned to a process. 
•  Physical Address: a real address in memory 
•  Virtual Address: an address relative to the start of a process's 

address space. 
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Where do addresses come from?!
How do programs generate instruction and data addresses? 
•  Compile time: The compiler generates the exact physical location 

in memory starting from some fixed starting position k. The OS 
does nothing. 

•  Load time: Compiler generates an address, but at load time the 
OS determines the process' starting position.  Once the process 
loads, it does not move in memory. 

•  Execution time: Compiler generates an address, and OS can place 
it any where it wants in memory. 
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Uniprogramming!
•  OS gets a fixed part of memory (highest memory in DOS). 
•  One process executes at a time. 
•  Process is always loaded starting at address 0. 
•  Process executes in a contiguous section of memory. 
•  Compiler can generate physical addresses. 
•  Maximum address = Memory Size - OS Size 
•  OS is protected from process by checking addresses used by 

process. 
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Uniprogramming!

! Simple, but does not allow for overlap of I/O and computation. 
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Multiple Programs Share Memory!
Transparency: 

–  We want multiple processes to coexist in memory. 
–  No process should be aware that memory is shared. 
–  Processes should not care what physical portion of memory they are 

assigned to. 

Safety: 
–  Processes must not be able to corrupt each other. 
–  Processes must not be able to corrupt the OS. 

Efficiency: 
–  Performance of CPU and memory should not be degraded badly due to 

sharing. 
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Relocation!

•  Put the OS in the highest memory. 
•  Assume at compile/link time that the process starts at 0 with a maximum 

address = memory size - OS size. 
•  Load a process by allocating a contiguous segment of memory in which the 

process fits. 
•  The first (smallest) physical address of the process is the base address and the 

largest physical address the process can access is the limit address. 
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Relocation!
•  Static Relocation: 

–  at load time, the OS adjusts the addresses in a process to reflect its position in 
memory.   

–  Once a process is assigned a place in memory and starts executing it, the OS cannot 
move it. (Why?) 

•  Dynamic Relocation: 
–  hardware adds relocation register (base) to virtual address to get a physical address; 
–  hardware compares address with limit register (address must be less than base). 
–  If test fails, the processor takes an address trap and ignores the physical address. 
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Dynamic Relocation!
•  Advantages: 

–  OS can easily move a process during execution. 
–  OS can allow a process to grow over time. 
–  Simple, fast hardware: two special registers, an add, and a compare. 

•  Disadvantages: 
–  Slows down hardware due to the add on every memory reference. 
–  Can't share memory (such as program text) between processes. 
–  Process is still limited to physical memory size. 
–  Degree of multiprogramming is very limited since all memory of all active 

processes must fit in memory. 
–  Complicates memory management. 
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Relocation: Properties!
•  Transparency: processes are largely unaware of sharing. 

•  Safety: each memory reference is checked. 

•  Efficiency: memory checks  and virtual to physical address 
translation are fast as they are done in hardware,  BUT if a process 
grows, it may have to be moved which is very slow. 
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Memory Management: Memory 
Allocation!

As processes enter the system, grow, and terminate, the OS must 
keep track of which memory is available and utilized. 

•  Holes: pieces of free memory (shaded above in figure) 
•  Given a new  process, the OS must decide which hole to use for 

the process 
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Memory Allocation Policies!
•  First-Fit: allocate the first one in the list in which the process fits.  

The search can start with the first hole, or where the previous first-
fit search ended. 

•  Best-Fit: Allocate the smallest hole that is big enough to hold the 
process. The OS must search the entire list or store the list sorted 
by size hole list. 

•  Worst-Fit: Allocate the largest hole to the process. Again the OS 
must search the entire list or keep the list sorted. 

•  Simulations show first-fit and best-fit usually yield better storage 
utilization than worst-fit; first-fit is generally faster than best-fit. 
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Fragmentation!
•  External Fragmentation 

–  Frequent loading and unloading programs causes free space to be broken 
into little pieces 

–  External fragmentation exists when there is enough memory to fit a process 
in memory, but the space is not contiguous 

–  50-percent rule: Simulations show that for every 2N allocated blocks, N 
blocks are lost due to fragmentation (i.e., 1/3 of memory space is wasted) 

–  We want an allocation policy that minimizes wasted space. 

•  Internal Fragmentation: 
–  Consider a process of size 8846 bytes and a block of size 8848 bytes 
! it is more efficient to allocate the process the entire 8848 block than it is to 

keep track of 2 free bytes 
–  Internal fragmentation exists when memory internal to a partition that is 

wasted 
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Compaction!

•  How much memory is moved? 
•  How big a block is created?  
•  Any other choices? 
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Swapping!
•  Roll out a process to disk,  releasing all the memory it holds.   
•  When process becomes active again, the OS must reload it in 

memory. 
–  With static relocation, the process must be put in the same position. 
–  With dynamic relocation, the OS finds a new position in memory for the 

process and updates the relocation and limit registers. 

•  If swapping is part of the system, compaction is easy to add. 
•  How could or should swapping interact with CPU scheduling? 
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Summary!
•  Processes must reside in memory in order to execute. 
•  Processes generally use virtual addresses which are translated into 

physical addresses just before accessing memory. 
•  Segmentation allows multiple processes to share main memory, 

but makes it expensive for processes to grow over time. 
•  Swapping allows the total memory being used by all processes to 

exceed the amount of physical memory available, but increases 
context switch time. 


