
Computer Science Lecture 9 page 1 Computer Science CS377: Operating Systems

Last Class: Synchronization!

•  Wrap-up on CPU scheduling
– MLFQ and Lottery scheduling

•  Synchronization
–  Mutual exclusion
–  Critical sections

•  Example: Too Much Milk
•  Locks
•  Synchronization primitives are required to ensure that only one thread executes in
a critical section at a time.

Computer Science Lecture 9 page 2 Computer Science CS377: Operating Systems

Today: Synchronization: Locks and
Semaphores!

•  More on hardware support for synchronization

•  Implementing locks using disabling interrupts, test&set and busy
waiting

•  What are semaphores?
–  Semaphores are basically generalized locks.
–  Like locks, semaphores are a special type of variable that supports two

atomic operations and offers elegant solutions to synchronization problems.
–  They were invented by Dijkstra in 1965.

Computer Science Lecture 9 page 3 Computer Science CS377: Operating Systems

Semaphores!
•  Semaphore: an integer variable that can be updated only using

two special atomic instructions.
•  Binary (or Mutex) Semaphore: (same as a lock)

–  Guarantees mutually exclusive access to a resource (only one process is in
the critical section at a time).

–  Can vary from 0 to 1
–  It is initialized to free (value = 1)

•  Counting Semaphore:
–  Useful when multiple units of a resource are available
–  The initial count to which the semaphore is initialized is usually the number

of resources.
–  A process can acquire access so long as at least one unit of the resource is

available

Computer Science Lecture 9 page 4 Computer Science CS377: Operating Systems

Semaphores: Key Concepts!
•  Like locks, a semaphore supports two atomic operations, Semaphore.Wait() and

Semaphore.Signal().

 S.Wait() // wait until semaphore S
 // is available
 <critical section>

 S.Signal() // signal to other processes
 // that semaphore S is free
•  Each semaphore supports a queue of processes that are waiting to access the

critical section (e.g., to buy milk).
•  If a process executes S.Wait() and semaphore S is free (non-zero), it continues

executing. If semaphore S is not free, the OS puts the process on the wait queue
for semaphore S.

•  A S.Signal() unblocks one process on semaphore S's wait queue.

Computer Science Lecture 9 page 5 Computer Science CS377: Operating Systems

Binary Semaphores: Example!
•  Too Much Milk using locks:
 Thread A Thread B

 Lock.Acquire(); Lock.Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock.Release(); Lock.Release();

•  Too Much Milk using semaphores:
 Thread A Thread B

 Semaphore.Wait(); Semaphore.Wait();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Semaphore.Signal(); Semaphore.Signal();

Computer Science Lecture 9 page 6 Computer Science CS377: Operating Systems

Implementing Signal and Wait!

=> Signal and Wait of course must be atomic!

class Semaphore {
 public:
 void Wait(Process P);
 void Signal();
 private:
 int value;
 Queue Q; // queue of processes;
}
Semaphore(int val) {
 value = val;
 Q = empty;
}

Wait(Process P) {
 value = value - 1;
 if (value < 0) {
 add P to Q;
 P->block();
} }
Signal() {
 value = value + 1;
 if (value <= 0){
 remove P from Q;
 wakeup(P);
} }

Computer Science Lecture 9 page 7 Computer Science CS377: Operating Systems

Signal and Wait: Example!
P1: S.Wait();
 S.Wait(); P2: S.Wait();

 S.Signal(); S.Signal();

 S.Signal();

Computer Science Lecture 9 page 8 Computer Science CS377: Operating Systems

Signal and Wait: Example!

Computer Science Lecture 9 page 9 Computer Science CS377: Operating Systems

Using Semaphores!
•  Mutual Exclusion: used to guard critical sections

–  the semaphore has an initial value of 1
–  S->Wait() is called before the critical section, and S->Signal() is called

after the critical section.
•  Scheduling Constraints: used to express general scheduling

constraints where threads must wait for some circumstance.
–  The initial value of the semaphore is usually 0 in this case.
–  Example: You can implement thread join (or the Unix system call waitpid

(PID)) with semaphores:

Semaphore S;

S.value = 0; // semaphore initialization

Thread.Join Thread.Finish
 S.Wait(); S.Signal();

Computer Science Lecture 9 page 10 Computer Science CS377: Operating Systems

Multiple Consumers and Producers!
class BoundedBuffer {!
 public:!
 void Producer(); !
 void Consumer();!
 private:!
 Items buffer;!
 // control access to buffers!
 Semaphore mutex; !
 // count of free slots !
 Semaphore empty; !
 // count of used slots!
 Semaphore full; !
} !
BoundedBuffer::BoundedBuffer
(int N){!
 mutex.value = 1;!
 empty.value = N;!
 full.value = 0;!
 new buffer[N];!
}!

BoundedBuffer::Producer(){!
 <produce item>!
 empty.Wait(); // one fewer slot, or
wait!
 mutex.Wait(); // get access to
buffers!
 <add item to buffer>!
 mutex.Signal(); // release buffers!
 full.Signal(); // one more used slot!
}!
BoundedBuffer::Consumer(){!
 full.Wait(); //wait until there's an
item!
 mutex.Wait(); // get access to
buffers!
 <remove item from buffer>!
 mutex.Signal(); // release buffers!
 empty.Signal(); // one more free
slot!
 <use item> }!

Computer Science Lecture 9 page 11 Computer Science CS377: Operating Systems

Multiple Consumers and Producers
Problem!

Computer Science Lecture 9 page 12 Computer Science CS377: Operating Systems

Summary!
•  Locks can be implemented by disabling interrupts or busy waiting

•  Semaphores are a generalization of locks

•  Semaphores can be used for three purposes:
–  To ensure mutually exclusive execution of a critical section (as locks do).
–  To control access to a shared pool of resources (using a counting

semaphore).
–  To cause one thread to wait for a specific action to be signaled from another

thread.

Computer Science Lecture 9 page 13 Computer Science CS377: Operating Systems

Last Class: Semaphores!
•  A semaphore S supports two atomic operations:

–  S!Wait(): get a semaphore, wait if busy semaphore S is available.
–  S!Signal(): release the semaphore, wake up a process if one is waiting for

S.

•  Binary or Mutex Semaphore: grants mutual exclusive access to
a resource

•  Counting Semaphore: useful for granting mutually exclusive
access for a set of resources

•  Semaphores are useful for mutual exclusion, progress and
bounded waiting

Computer Science Lecture 9 page 14 Computer Science CS377: Operating Systems

Next: Monitors and Condition Variables!
•  What is wrong with semaphores?

•  Monitors
–  What are they?
–  How do we implement monitors?
–  Two types of monitors: Mesa and Hoare

•  Compare semaphore and monitors

Computer Science Lecture 9 page 15 Computer Science CS377: Operating Systems

What's wrong with Semaphores?!
•  Semaphores are a huge step up from the equivalent load/store

implementation, but have the following drawbacks.
–  They are essentially shared global variables.
–  There is no linguistic connection between the semaphore and the data to

which the semaphore controls access.
–  Access to semaphores can come from anywhere in a program.
–  They serve two purposes, mutual exclusion and scheduling constraints.
–  There is no control or guarantee of proper usage.

•  Solution: use a higher level primitive called monitors

Computer Science Lecture 9 page 16 Computer Science CS377: Operating Systems

What is a Monitor?!
•  A monitor is similar to a class that ties the data, operations, and

in particular, the synchronization operations all together,

•  Unlike classes,
–  monitors guarantee mutual exclusion, i.e., only one thread may execute a

given monitor method at a time.
–  monitors require all data to be private.

Computer Science Lecture 9 page 17 Computer Science CS377: Operating Systems

Monitors: A Formal Definition!
•  A Monitor defines a lock and zero or more condition variables for

managing concurrent access to shared data.
–  The monitor uses the lock to insure that only a single thread is active in the

monitor at any instance.
–  The lock also provides mutual exclusion for shared data.
–  Condition variables enable threads to go to sleep inside of critical sections,

by releasing their lock at the same time it puts the thread to sleep.

•  Monitor operations:
–  Encapsulates the shared data you want to protect.
–  Acquires the mutex at the start.
–  Operates on the shared data.
–  Temporarily releases the mutex if it can't complete.
–  Reacquires the mutex when it can continue.
–  Releases the mutex at the end.

Computer Science Lecture 9 page 18 Computer Science CS377: Operating Systems

Implementing Monitors in Java!
•  It is simple to turn a Java class into a monitor:

–  Make all the data private
–  Make all methods synchronized (or at least the non-private ones)

class Queue{
 private ...; // queue data

 public void synchronized Add(Object item) {
 put item on queue;
 }

 public Object synchronized Remove() {
 if queue not empty {
 remove item;
 return item;
 }
 }

Computer Science Lecture 9 page 19 Computer Science CS377: Operating Systems

Condition Variables!
•  How can we change remove() to wait until something is on the

queue?
–  Logically, we want to go to sleep inside of the critical section
–  But if we hold on to the lock and sleep, then other threads cannot access the

shared queue, add an item to it, and wake up the sleeping thread

 => The thread could sleep forever

•  Solution: use condition variables
–  Condition variables enable a thread to sleep inside a critical section
–  Any lock held by the thread is atomically released when the thread is put to

sleep

Computer Science Lecture 9 page 20 Computer Science CS377: Operating Systems

Operations on Condition Variables!
•  Condition variable: is a queue of threads waiting for something

inside a critical section.
•  Condition variables support three operations:

1.  Wait(Lock lock): atomic (release lock, go to sleep), when the process
wakes up it re-acquires lock.

2.  Signal(): wake up waiting thread, if one exists. Otherwise, it does nothing.
3.  Broadcast(): wake up all waiting threads

•  Rule: thread must hold the lock when doing condition variable
operations.

Computer Science Lecture 9 page 21 Computer Science CS377: Operating Systems

Condition Variables in Java!
•  Use wait() to give up the lock
•  Use notify() to signal that the condition a thread is waiting on is satisfied.
•  Use notifyAll() to wake up all waiting threads.
•  Effectively one condition variable per object.

class Queue {
 private ...; // queue data

 public void synchronized Add(Object item) {
 put item on queue;
 notify ();
 }
 public Object synchronized Remove() {
 while queue is empty
 wait (); // give up lock and go to sleep
 remove and return item;
 }

Computer Science Lecture 9 page 22 Computer Science CS377: Operating Systems

Mesa versus Hoare Monitors!
What should happen when signal() is called?

–  No waiting threads => the signaler continues and the signal is effectively
lost (unlike what happens with semaphores).

–  If there is a waiting thread, one of the threads starts executing, others must
wait

•  Mesa-style: (Nachos, Java, and most real operating systems)
–  The thread that signals keeps the lock (and thus the processor).
–  The waiting thread waits for the lock.

•  Hoare-style: (most textbooks)
–  The thread that signals gives up the lock and the waiting thread gets the

lock.
–  When the thread that was waiting and is now executing exits or waits again,

it releases the lock back to the signaling thread.

Computer Science Lecture 9 page 23 Computer Science CS377: Operating Systems

Mesa versus Hoare Monitors (cont.)!
The synchronized queuing example above works for either style of monitor, but we

can simplify it for Hoare-style semantics:
–  Mesa-style: the waiting thread may need to wait again after it is awakened, because

some other thread could grab the lock and remove the item before it gets to run.
–  Hoare-style: we can change the ‘while’ in Remove to an ‘if’ because the waiting

thread runs immediately after an item is added to the queue.

class Queue {
 private ...; // queue data
 public void synchronized add(Object item){
 put item on queue; notify ();
 }
 public Object synchronized remove() {
 if queue is empty // while becomes if
 wait ();
 remove and return item;
 }

Computer Science Lecture 9 page 24 Computer Science CS377: Operating Systems

Monitors in C++!
•  Monitors in C++ are more complicated.

•  No synchronization keyword
 => The class must explicitly provide the lock, acquire and release
it correctly.

Computer Science Lecture 9 page 25 Computer Science CS377: Operating Systems

Monitors in C++: Example!
class Queue {
 public:
 Add();
 Remove();
 private
 Lock lock;
 // queue data();
}

Queue::Add() {
 lock->Acquire(); // lock before using data
 put item on queue; // ok to access shared data
 conditionVar->Signal();
 lock->Release(); // unlock after access
}
Queue::Remove() {
 lock->Acquire(); // lock before using data
 while queue is empty
 conditionVar->Wait(lock); // release lock & sleep
 remove item from queue;
 lock->Release(); // unlock after access
 return item;
}

Computer Science Lecture 9 page 26 Computer Science CS377: Operating Systems

Bounded Buffer using Hoare-style
condition variables!

class BBMonitor {
 public:
 void Append(item);
 void Remove(item);
 private:
 item buffer[N];
 int last, count;
 Condition full, empty;

}
BBMonitor {
 count = 0;
 last = 0;
}

Append(item){
 lock.Acquire();
 if (count == N)
 empty.Wait(lock);
 buffer[last] = item;
 last = (last + 1) mod N;
 count += 1;
 full.Signal();
 lock.Release();
}
Remove(item){
 lock.Acquire();
 if (count == 0)
 full.Wait(lock);
 item = buffer[(last-count) mod N];
 count = count-1;
 empty.Signal();
 lock.Release();
}

Computer Science Lecture 9 page 27 Computer Science CS377: Operating Systems

Semaphores versus Monitors!
•  Can we build monitors out of semaphores? After all, semaphores provide

atomic operations and queuing. Does the following work?
 condition.Wait() { semaphore.wait(); }
 condition.Signal() { semaphore.signal(); }

•  But condition variables only work inside a lock. If we use semaphores inside a
lock, we have may get deadlock. Why?

•  How about this?

condition.Wait(Lock *lock) {
 lock.Release();
 semaphore.wait();
 lock.Acquire();
 }
 condition.Signal() {
 semaphore.signal(); }

Computer Science Lecture 9 page 28 Computer Science CS377: Operating Systems

Semaphores versus Condition
Variables!

•  Condition variables do not have any history, but semaphores do.
–  On a condition variable signal, if no one is waiting, the signal is a no-op.

 => If a thread then does a condition.Wait, it waits.
–  On a semaphore signal, if no one is waiting, the value of the semaphore is

incremented.
 => If a thread then does a semaphore.Wait, then value is
decremented and the thread continues.

•  Semaphore Wait and Signal are commutative, the result is the
same regardless of the order of execution

•  Condition variables are not, and as a result they must be in a
critical section to access state variables and do their job.

•  It is possible to implement monitors with semaphores

Computer Science Lecture 9 page 29 Computer Science CS377: Operating Systems

Implementing Monitors with
Semaphores!

class Monitor {
 public:
 void ConditionWait(); // Condition Wait
 void ConditionSignal(); // Condition Signal
 private:
 <shared data>; // data being protected by monitor
 semaphore cvar; // suspends a thread on a wait
 int waiters; // number of threads waiting on
 // a cvar (one for every condition)
 semaphore lock; // controls entry to monitor
 semaphore next; // suspends this thread when signaling another
 int nextCount; // number of threads suspended
} // on next
Monitor::Monitor {
 cvar = 0; // Nobody waiting on condition variable
 lock = FREE; // Nobody in the monitor
 next = nextCount = waiters = 0;
}

Computer Science Lecture 9 page 30 Computer Science CS377: Operating Systems

Implementing Monitors with
Semaphores!

ConditionWait() { // Condition Wait
 waiters += 1;
 if (nextCount > 0)
 next.Signal(); // resume a suspended thread
 else
 lock.Signal(); // allow a new thread in the monitor
 cvar.wait(); // wait on the condition
 waiters -= 1;
}
ConditionSignal(){ // Condition Signal
 if (waiters > 0) { // don't signal cvar if nobody is waiting
 nextCount += 1;
 cvar.Signal(); // Semaphore Signal
 next.Wait(); // Semaphore Wait
 nextCount -= 1;
 }
}

Computer Science Lecture 9 page 31 Computer Science CS377: Operating Systems

Using the Monitor Class!
// Wrapper code for all methods on the shared data
Monitor::someMethod () {
 lock.Wait(); // lock the monitor OR use synchronized
 <ops on data and calls to ConditionWait() and ConditionSignal()>
 if (nextCount > 0)
 next.Signal(); // resume a suspended thread
 else
 lock.Signal(); // allow a new thread into the monitor
}

•  Is this Hoare semantics or Mesa semantics? What would you
change to provide the other semantics?

Computer Science Lecture 9 page 32 Computer Science CS377: Operating Systems

Summary!
•  Monitor wraps operations with a mutex

•  Condition variables release mutex temporarily
•  Java has monitors built into the language

•  C++ does not provide a monitor construct, but monitors can be
implemented by following the monitor rules for acquiring and
releasing locks

•  It is possible to implement monitors with semaphores

