
CMPSCI 377 Operating Systems Spring 2010

Lecture 8: February 11
Lecturer: Prashant Shenoy TA: Vimal Mathew & Tim Wood

8.1 Implementing Locks

To implement a lock, the OS needs a way to ensure that a process will be able to run a critical section
where it can access some shared data without another process modifying the data at the same time. No
matter how an OS chooses to implement locks, it must have some hardware support. One way to implement
locks is to disable interrupts, since interrupts are the only way that a CPU has to change what it is doing.
Normally, a process in an operating system will continue running unless it either performs an I/O request or
it is interrupted by the operating system through the use of an interrupt–for example because it’s scheduling
time quantum has run out or due to some kind of exception. By disabling interrupts, we can ensure that
a process will maintain control of the CPU and guarantee that only one process (the active one) will have
access to the shared data. Disabling interrupts will prevent any external events from causing the process to
lose control of the CPU. In addition, the OS must prevent internal events as well; this is typically done by
preventing a process from initiating an IO request while in a critical section.

Another option for implementing locks would be to make use of atomic operations, such as test&set. This
operation (which usually correspond to an assembly instruction), is such that test&set(x) returns 1, if x=1;
otherwise, if x=0, it returns 0 and sets x to 1. Each of these operations must be implemented atomically by
the hardware. Having this type of atomic operation, one could implement acquire(L) simply as

while test&set(L) do nothing;

and release(L) simply as

l = 0;

A lock implementation can either use busy waiting or wait queues. In busy waiting, when a process calls
acquire(), it will continuously check the lock to see when it becomes available again. While this is simple
to implement, it can be inefficient because the process is using CPU time to constantly check a lock which
another process has control of. An alternative is to use wait queues. In this case, when a process calls
acquire(), the OS places it on a wait queue. This is a list of processes which are all waiting for the lock to
become available. These processes will not be scheduled by the OS until the process currently using the lock
calls release(). This is a more efficient approach, but the lock implementation needs to be very careful about
how disabling and enabling interrupts is controlled as processes are put to sleep on the wait queue.

8.2 Semaphores

A semaphore is a more generalized form of a lock that can be used to regulate traffic in a critical section.
A semaphore is implemented as a non-negative integer counter with atomic increment and decrement oper-
ations; whenever the decrement operation would make the counter negative, the semaphore blocks instead.
The increment operation is called P, or signal ; the decrement is called V, or wait :

8-1



8-2 Lecture 8: February 11

• Semaphore.wait(): tries to decrease the counter by one; if the counter is zero, blocks until greater than
zero.

• Semaphore.signal(): increments the counter; wakes up one waiting process.

Binary Semaphore: A binary semaphore must be initialized with 1 or 0, and the implementation of
wait and signal operations must alternate. If the semaphore is initialized with 1, then the first completed
operation must be wait. If the semaphore is initialized with 0, then the first completed operation must be
signal. Both wait and signal operations can be blocked, if they are attempted in a consecutive manner.

Counting Semaphore: A counting semaphore can be considered as a pool of permits. A thread used wait
operation to request a permit. If the pool is empty, the thread waits until a permit becomes available. A
thread uses signal operation to return a permit to the pool. A counting semaphore can take any initial value.

Notice that we can use semaphores to implement both locks and ordering constraints. For example, by
initializing a semaphore to 1, threads can wait for an event to occur:

thread A
// wait for thread B
sem.wait()
// do stuff

thread B
// do stuff, then wake up A
sem.signal()

8.2.1 Implementing Signal and Wait

The signal and wait operations of a semaphore can be implemented as follows.

class Semaphore {
public:

void Wait(Process P);
void Signal();

private:
int value;
Queue Q; // queue of processes;

}
Semaphore::Semaphore(int val) {

value = val;
Q = empty;

}

Semaphore::Wait(Process P) {
value = value - 1;
if (value < 0) {

add P to Q;
P->block();

}
}



Lecture 8: February 11 8-3

Semaphore::Signal() {
value = value + 1;
if (value <= 0){

remove P from Q;
wakeup(P);

}
}

8.2.2 Using Semaphores

Semaphores can be used to implement critical sections or to enforce certain scheduling constraints. Critical
sections are typically built by using semaphores that are initialized to 1. In this case, one process can call
wait() in order to enter the critical section, preventing any other processes from passing the wait condition.
Once the process finishes the critical section, it calls signal() which will allow the next process to enter the
critical section. In some cases, it is useful to start the semaphore with a value greater than 1. This allows
multiple processes to enter the critical section at once. While this can be a problem if the critical section is
supposed to be protecting data, it can be useful in other cases such as where a limited number of resources
are available for simultaneous use, such as in the Multiple Consumers and Producers Problem.

Semaphores can be used for scheduling constraints by initializing the semaphore to 0 and only incrementing
it once a certain condition is met. This will cause all processes to initially block during their wait calls. Only
once the condition is met will signal be called, allowing one of the waiting processes to continue execution.
An example use case of this is for implementing the waitpid() function which causes a process to wait until
another process exits. By setting the semaphore to 0 initially, any process that calls waitpid would enter
a waiting state. Once the process being waited on completes, the signal() call could be made, causing the
waiting processes to wake up.


