CMPSCI 377 Operating Systems Fall 2008

Lecture 7: February 9
Lecturer: Prashant Shenoy Scribe: Vimal Mathew & Tim Wood

7.1 Lottery Scheduling

Lottery Scheduling is a probabilistic scheduling algorithm for processes in an operating system. Processes
are each assigned some number of lottery tickets, and the scheduler draws a random ticket to select the
next process. The distribution of tickets need not be uniform; granting a process more tickets provides it a
relative higher chance of selection. This technique can be used to approximate other scheduling algorithms,
such as Shortest job next and Fair-share scheduling. Allocating more tickets to a process gives it a higher
priority since it has a greater chance of being scheduled at each scheduling decision.

Lottery scheduling solves the problem of starvation. Giving each process at least one lottery ticket guarantees
that it has a non-zero probability of being selected at each scheduling operation. On average, CPU time is
proportional to the number of tickets given to each job. For approximating SJF, most tickets are assigned to
short running jobs and fewer to longer runnning jobs. To avoid starvation, every job gets at least one ticket.

7.2 Synchronization

As we already know, threads must ensure consistency; otherwise, race conditions (non-deterministic results)
might happen.

Now consider the “too much milk problem”: two people share the same fridge and must guarantee that
there’s always milk, but not too much milk. If the two people do not coordinate, it is possible that both will
go to buy milk at once and have too much milk. How can they solve this? First, we consider some important
concepts and their definitions:

e Synchronization: the use of atomic operations to allow coordination between threads;

e Mutual Exclusion: ensuring that only one thread is performing a particular action or accessing a
piece of data at a time;

e Critical section: a piece of code that only one thread can execute at a time;
e Lock: a mechanism for mutual exclusion; the program locks on entering a critical section, acesses the

shared data, and then unlocks. Any other programs must wait if they try to enter a locked section.

For the above mentioned problem, we want to ensure some correctness properties. First, we want to guarantee
that only one person buys milk when it is neeed (this is the safety property, aka “nothing bad happens”).
Also, we want to ensure the liveness property — that someone does buy milk when needed. Now consider
that we can use the following atomic operations when writing the code for the problem:

e “leave a note” (equivalent to a lock)



7-2 Lecture 7: February 9

e “remove a note” (equivalent to a unlock)

e “don’t buy milk if there’s a note” (equivalent to a wait)
Our first try could be to use the following code on both threads:

if (no milk and no note)
leave note
buy milk
remove note

Unfortunately, this doesn’t work because both threads could simultaneously verify that there’s no note and
no milk, and then both would simultaneously leave a note, and buy more milk. The problem in this case is
that we end up with too much milk (safety property not met).

Now consider our solution #2:

Thread A:

leave note "A"
if (no note "B")
if (no milk)
buy milk
remove note "A"

Thread B:

leave note "B"
if (no note "A")
if (no milk)
buy milk
remove note "B"

The problem now is that if both threads leave notes at the same time, neither will ever do anything. Then,
we end up with no milk at all, which means that the progress property not met. Solution #3 will be discussed
on the next class.

7.3 Concurrency

When programming with threads, processes or with any type of program that has to deal with shared data,
we have to take into account all possible interleaving of these processes. In other words, in order to guarantee
that concurrent processes are correct, we have to somehow guarantee that they generate the correct solution
no matter how they are interleaved.

From the “Too Much Milk” problem it is clear that it can be very difficult to come up with an approach
that always solves it properly. Let us now consider an approach that does work:

Thread A



Lecture 7: February 9 7-3

leave note A
while (note B)
do nothing
if (no milk)
buy milk
remove note A

Thread B

leave note B
if (no note A)
if (no milk)
buy milk

remove note B

This approach, unlike the two examples considered on the previous class, does work. However, it is not
easy to be convinced that these two algorithms, when taken together, always produce the desired behavior.
Moreover, these pieces of code have some drawbacks: first, notice that Thread A goes into a loop waiting
for B to release its note. This is called “busy waiting”, and is generally not a good idea because Thread A
wastes a lot of CPU, and because it can’t execute anything usefull while B is not done. Also, notice that
even though both threads try to perform the exact same thing, they do it in very different ways. This is a
problem specially when we were to write, say, a third thread. This third thread would probably look very
different than both A and B, and this type of assymmetric code does not scale very well. So the question
is: how can we guarantee correctness and at the same time avoid all these drawbacks? The answer is that
we can augment the programming language with high-level constructs capable of solving synchronization
problems. Currently, the best known constructs used in order to deal with concurrency problems are locks,
semaphores, monitors.

7.3.1 Locks/Mutex

Locks (also known as Mutexes) provide mutual exclusion to shared data inside a critical session. They are
implemented by means of two atomic routines: acquire, which waits for a lock, and takes it when possible;
and release, which unlocks the lock and wakes up the waiters. The rules for using locks/mutex are the
following:

1. only one person can have the lock at a time;

2. locks must be acquired before accessing shared data;
3. locks must be released after use;

4. locks are initially released.

Let us now try to rewrite the “Too Much Milk” problem in a cleaner and more symmetric way, using locks.
In order to do so, the code for Thread A (and also for Thread B) has to be the following:

lock.acquire()

if (no milk)
buy milk

lock.release()



7-4 Lecture 7: February 9

This is clearly much easier to understand than the previous solutions; also, it is more scalable, since all
threads are implemented in the exact same way.



