
Computer Science Lecture 6, page 1 Computer Science CS377: Operating Systems

Last Class: Threads and Scheduling!

•  Thread: sequential execution stream within a process
•  Kernel threads versus user-level threads
•  Goals for Scheduling:

–  Minimize average response time
–  Maximize throughput
–  Share CPU equally
–  Other goals?

•  Scheduling Algorithms:
–  Selecting a scheduling algorithm is a policy decision

Computer Science Lecture 6, page 2 Computer Science CS377: Operating Systems

Today: More on Scheduling Algorithms!

•  Goals for scheduling

•  FCFS & Round Robin

•  SJF

•  Multilevel Feedback Queues

•  Lottery Scheduling

Computer Science Lecture 6, page 3 Computer Science CS377: Operating Systems

Short Term Scheduling!
•  The kernel runs the scheduler at least when

1.  a process switches from running to waiting,
2.  an interrupt occurs, or
3.  a process is created or terminated.

•  Non-preemptive system: the scheduler must wait for
one of these events

•  Preemptive system: the scheduler can interrupt a
running process

Computer Science Lecture 6, page 4 Computer Science CS377: Operating Systems

Criteria for Comparing Scheduling Algorithms!

•  CPU Utilization The percentage of time that the CPU is
busy.

•  Throughput The number of processes completing in a unit
of time.

•  Turnaround time The length of time it takes to run a
process from initialization to termination, including all the
waiting time.

•  Waiting time The total amount of time that a process is in
the ready queue.

•  Response time The time between when a process is ready to
run and its next I/O request.

Computer Science Lecture 6, page 5 Computer Science CS377: Operating Systems

Scheduling Policies !
Ideally, choose a CPU scheduler that optimizes all criteria

simultaneously (utilization, throughput,..), but this is not
generally possible

Instead, choose a scheduling algorithm based on its ability to satisfy
a policy

•  Minimize average response time - provide output to the user as quickly as
possible and process their input as soon as it is received.

•  Minimize variance of response time - in interactive systems, predictability may
be more important than a low average with a high variance.

•  Maximize throughput - two components
–  minimize overhead (OS overhead, context switching)
–  efficient use of system resources (CPU, I/O devices)

•  Minimize waiting time - give each process the same amount of time on the
processor. This might actually increase average response time.

Computer Science Lecture 6, page 6 Computer Science CS377: Operating Systems

Scheduling Policies!
Simplifying Assumptions

•  One process per user
•  One thread per process
•  Processes are independent

Researchers developed these algorithms in the 70's when these
assumptions were more realistic, and it is still an open problem
how to relax these assumptions.

Computer Science Lecture 6, page 7 Computer Science CS377: Operating Systems

Scheduling Algorithms: A Snapshot!

FCFS: First Come, First Served

Round Robin: Use a time slice and preemption to alternate jobs.

SJF: Shortest Job First

Multilevel Feedback Queues: Round robin on each priority queue.

Lottery Scheduling: Jobs get tickets and scheduler randomly
picks winning ticket.

Computer Science Lecture 6, page 8 Computer Science CS377: Operating Systems

Scheduling Policies!

FCFS: First-Come-First-Served (or FIFO: First-In-First-Out)

•  The scheduler executes jobs to completion in arrival order.
•  In early FCFS schedulers, the job did not relinquish the CPU even

when it was doing I/O.
•  We will assume a FCFS scheduler that runs when processes are

blocked on I/O, but that is non-preemptive, i.e., the job keeps the
CPU until it blocks (say on an I/O device).

Computer Science Lecture 6, page 9 Computer Science CS377: Operating Systems

FCFS Scheduling Policy: Example!

•  If processes arrive 1 time unit apart, what is the average
wait time in these three cases?

Computer Science Lecture 6, page 10 Computer Science CS377: Operating Systems

FCFS: Advantages and Disadvantages!

Advantage: simple

Disadvantages:
•  average wait time is highly variable as short jobs may wait behind

long jobs.

•  may lead to poor overlap of I/O and CPU since CPU-bound
processes will force I/O bound processes to wait for the CPU,
leaving the I/O devices idle

Computer Science Lecture 6, page 11 Computer Science CS377: Operating Systems

Round Robin Scheduling!
•  Variants of round robin are used in most time sharing systems
•  Add a timer and use a preemptive policy.
•  After each time slice, move the running thread to the back of the queue.
•  Selecting a time slice:

–  Too large - waiting time suffers, degenerates to FCFS if processes are never
preempted.

–  Too small - throughput suffers because too much time is spent context switching.
 => Balance these tradeoffs by selecting a time slice where context switching is
roughly 1% of the time slice.

•  Today: typical time slice= 10-100 ms, context switch time= 0.1-1ms
•  Advantage: It's fair; each job gets an equal shot at the CPU.
•  Disadvantage: Average waiting time can be bad.

Computer Science Lecture 6, page 12 Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 1!

• 5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length
Completion Time Wait Time

FCFS Round Robin FCFS Round Robin
1 100
2 100
3 100
4 100
5 100

Average

Computer Science Lecture 6, page 13 Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 2!
• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Length
Completion Time Wait Time

FCFS Round Robin FCFS Round Robin
1 50
2 40
3 30
4 20
5 10

Average

Computer Science Lecture 6, page 14 Computer Science CS377: Operating Systems

SJF/SRTF: Shortest Job First!
•  Schedule the job that has the least (expected) amount of work

(CPU time) to do until its next I/O request or termination.
•  Advantages:

–  Provably optimal with respect to minimizing the average waiting time
–  Works for preemptive and non-preemptive schedulers
–  Preemptive SJF is called SRTF - shortest remaining time first

 => I/O bound jobs get priority over CPU bound jobs

•  Disadvantages:
–  Impossible to predict the amount of CPU time a job has left
–  Long running CPU bound jobs can starve

Computer Science Lecture 6, page 15 Computer Science CS377: Operating Systems

SJF: Example!
• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Length Completion Time Wait Time
FCFS RR SJF FCFS RR SJF

1 50
2 40
3 30
4 20
5 10

Average

Computer Science Lecture 6, page 16 Computer Science CS377: Operating Systems

Multilevel Feedback Queues (MLFQ)!

•  Multilevel feedback queues use past behavior to predict the future
and assign job priorities

 => overcome the prediction problem in SJF
•  If a process is I/O bound in the past, it is also likely to be I/O

bound in the future (programs turn out not to be random.)
•  To exploit this behavior, the scheduler can favor jobs that have

used the least amount of CPU time, thus approximating SJF.
•  This policy is adaptive because it relies on past behavior and

changes in behavior result in changes to scheduling decisions.

Computer Science Lecture 6, page 17 Computer Science CS377: Operating Systems

Approximating SJF: Multilevel
Feedback Queues!

•  Multiple queues with different priorities.
•  Use Round Robin scheduling at each priority level, running the

jobs in highest priority queue first.
•  Once those finish, run jobs at the next highest priority queue, etc.

(Can lead to starvation.)
•  Round robin time slice increases exponentially at lower priorities.

Computer Science Lecture 6, page 18 Computer Science CS377: Operating Systems

Adjusting Priorities in MLFQ!
•  Job starts in highest priority queue.

•  If job's time slices expires, drop its priority one level.

•  If job's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.

! CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

Computer Science Lecture 6, page 19 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1!

• 3 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length
Completion Time Wait Time

RR MLFQ RR MLFQ
1 30
2 20
3 10

Average
Queue Time

 Slice Job
1 1
2 2
3 4

Computer Science Lecture 6, page 20 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2!

• 3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 2 sec,
context switch time of 0 sec, 2 queues.

Job Length
Completion Time Wait Time

RR MLFQ RR MLFQ
1 30
2 20
3 10

Average
Queue Time

Slice Job
1 2
2 4

Computer Science Lecture 6, page 21 Computer Science CS377: Operating Systems

Improving Fairness!
Since SJF is optimal, but unfair, any increase in fairness by giving

long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.

Possible solutions:
•  Give each queue a fraction of the CPU time. This solution is only

fair if there is an even distribution of jobs among queues.
•  Adjust the priority of jobs as they do not get serviced (Unix

originally did this.) This ad hoc solution avoids starvation but
average waiting time suffers when the system is overloaded
because all the jobs end up with a high priority,.

Computer Science Lecture 6, page 22 Computer Science CS377: Operating Systems

Lottery Scheduling!
•  Give every job some number of lottery tickets.
•  On each time slice, randomly pick a winning ticket.
•  On average, CPU time is proportional to the number of tickets

given to each job.
•  Assign tickets by giving the most to short running jobs, and fewer

to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

•  Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

Computer Science Lecture 6, page 23 Computer Science CS377: Operating Systems

Lottery Scheduling: Example!
•  Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% 9%
0/2
2/0

10/1
1/10

Computer Science Lecture 6, page 24 Computer Science CS377: Operating Systems

Summary of Scheduling Algorithms:!
•  FCFS: Not fair, and average waiting time is poor.
•  Round Robin: Fair, but average waiting time is poor.
•  SJF: Not fair, but average waiting time is minimized assuming we

can accurately predict the length of the next CPU burst. Starvation
is possible.

•  Multilevel Queuing: An implementation (approximation) of SJF.
•  Lottery Scheduling: Fairer with a low average waiting time, but

less predictable.
! Our modeling assumed that context switches took no time, which

is unrealistic.

Computer Science Lecture 6, page 25 Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 1!

• 5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Job Length
Completion Time Wait Time

FCFS Round Robin FCFS Round Robin
1 100 100 496 0 396

2 100 200 497 100 397

3 100 300 498 200 398

4 100 400 499 300 399

5 100 500 500 400 400

Average 300 498 200 398

Computer Science Lecture 6, page 26 Computer Science CS377: Operating Systems

Round Robin Scheduling: Example 2!
• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

Job Length
Completion Time Wait Time

FCFS Round Robin FCFS Round Robin
1 50 50 150 0 100

2 40 90 140 50 100

3 30 120 120 90 90

4 20 140 90 120 70

5 10 150 50 140 40

Average 110 110 80 80

Computer Science Lecture 6, page 27 Computer Science CS377: Operating Systems

SJF: Example!
• 5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Job Length Completion Time Wait Time
FCFS RR SJF FCFS RR SJF

1 50 50 150 150 0 100 100

2 40 90 140 100 50 100 60

3 30 120 120 60 90 90 30

4 20 140 90 30 120 70 10

5 10 150 50 10 140 40 0

Average 110 110 70 80 80 40

Computer Science Lecture 6, page 28 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 1!

• 5 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Job Length
Completion Time Wait Time
RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 53 30 33

3 10 30 32 20 22

Average 46 2/3 48 1/3 26 2/3 28 1/3

Queue Time
Slice Job

1 1 111 , 221 , 331

2 2 153 , 273 , 393
3 4 1137 , 2177 , 3217

12511 , 22911 , 33210 ...

Computer Science Lecture 6, page 29 Computer Science CS377: Operating Systems

Multilevel Feedback Queues:Example 2!

• 3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

Job Length
Completion

Time Wait Time
RR MLFQ RR MLFQ

1 30 60 60 30 30

2 20 50 50 30 30

3 10 30 18 20 8

Average 46 2/3 45 26 2/3 25 1/3

Computer Science Lecture 6, page 30 Computer Science CS377: Operating Systems

Lottery Scheduling Example!
•  Short jobs get 10 tickets, long jobs get 1 ticket each.

short jobs/
long jobs

% of CPU each
short job gets

% of CPU each
long job gets

1/1 91% (10/11) 9% (1/11)
0/2 50% (1/2)
2/0 50% (10/20)

10/1 10% (10/101) < 1% (1/101)
1/10 50% (10/20) 5% (1/20)

