
CMPSCI 377 Operating Systems Fall 2008

Lecture 5: Feb 2
Lecturer: Prashant Shenoy TA: Vimal Mathew & Tim Wood

5.1 Interprocess Communication

Inter-Process Communication (IPC) is a set of techniques for the exchange of data among two or more
threads in one or more processes. Processes may be running on one or more computers connected by a
network. IPC techniques are divided into methods for message passing, synchronization, shared memory,
and remote procedure calls (RPC). The method of IPC used may vary based on the bandwidth and latency
of communication between the threads, and the type of data being communicated.

5.1.1 Producer and Consumer

The producer and consumer problem is one where two processes must coordinate to exchange data. In this
system, a producer process is periodically creating new data elements and consumer process is waiting for
these data items to be created and is using them for some other task. In order for this system to function,
the producer and consumer require a communication process to allow them to coordinate when the producer
has created a new item so that the consumer can successfully read the data. Such a system can be built
using either message passing or a shared memory approach.

5.1.2 Message Passing

Message passing is a form of communication used in interprocess communication. Communication is made
by the sending of messages to recipients. Each process should be able to name the other processes. The
producer typically uses send() system call to send messages, and the consumer uses receive() system call
to receive messages. These system calls can be either synchronous or asynchronous, and could either be
between processes running on a single machine, or could be done over the network to coordinate machines
in a distributed system. This allows the producer to transfer data to the consumer as it is created.

5.1.3 Shared Memory

Shared Memory is an OS provided abstraction which allows a memory region to be simultaneously accessed
by multiple programs with an intent to provide communication among them. One process will create an
area in RAM which other processes can access (this is typically done using system calls mmap, shmget etc).
Normally the OS prevents processes from accessing the memory of another process, but the Shared Memory
features in the OS can allow data to be shared. Since both processes can access the shared memory area
like regular working memory, this is a very fast way of communication (as opposed to other mechanisms of
IPC). On the other hand, it is less powerful, as for example the communicating processes must be running
on the same machine (whereas other IPC methods can use a computer network), and care must be taken to
avoid issues if processes sharing memory are running simultaneously and may try to edit the shared buffer
at the same time.

5-1



5-2 Lecture 5: Feb 2

5.2 Threads

A thread is a sequential execution stream within a process. This means that a single process may be broken
up into multiple threads. Each thread has its own Program Counter, registers, and stack, but they all share
the same address space within the process. The primary benefit of such an approach is that a process can
be split up into many threads of control, allowing for concurrency since some parts of the process to make
progress while others are busy. Threads can also be used to modularize a process – a process like a web
browser may create one thread for each browsing tab, or create threads to run external plugins.

5.2.1 Processes vs threads

One might argue that in general processes are more flexible than threads. For example, processes are
controlled independently by the OS, meaning that if one crashes it will not affect other processes. However,
processes require explicit communication using either message passing or shared memory which may add
overhead since it requires support from the OS kernel. Using threads within a process allows them all to
share the same address space, simplifying communication between threads. However, threads have their
own problems: because they communicate through shared memory they must run on same machine and
care must be taken to create thread-safe code that functions correctly despite multiple threads acting on the
same set of shared data. Additionally, since all threads are within a single process, if on thread has a bug it
can corrupt the address space of all other threads in the process.

When comparing processes and threads, we can also analyze the context switch cost. Whenever it is needed
to switch between two processes, we must invalidate the TLB cache which can be a slow operation. When
we switch between two threads, on the other hand, it is not needed to invalidate the TLB because all threads
share the same address space, and thus have the same contents in the cache. Thus the cost of switching
between threads is much smaller than the cost of switching between processes.

5.2.2 Kernel Threads and User-Level Threads

Threads can either be created as kernel threads or user-level threads depending on the operating system. In
systems that use kernel-level threads, the OS itself is aware of each individual thread. A context switch
between kernel threads belonging to the same process requires only the registers, program counter, and stack
to be changed; the overall memory management information does not need to be switched since both of the
threads share the same address space. Thus context switching between two kernel threads is slightly faster
than switching between two processes. However, kernel threads can still be somewhat expensive because
system calls are required to switch between threads. Also, since the OS is responsible for scheduling the
threads, the application does not have any control over how its threads are managed.

A user-level thread is a thread within a process which the OS does not know about. In a user-level thread
approach the cost of a context switch between threads can be made even lower since the OS itself does not
need to be involved–no extra system calls are required. A user-level thread is represented by a program
counter, registers, stack, and small thread control block (TCB). Programmers typically used a thread library
to simplify management of threads within a process. Creating a new thread, switching between threads, and
synchronizing threads are done via function calls into the library. This provides an interface for creating and
stopping threads, as well as control over how they are scheduled.

When using user-level threads, the OS only schedules processes, which in turn are responsible for scheduling
their individual threads. Unfortunately, since the threads are invisble to the OS, the OS can make poor
decisions such as scheduling a process with idle threads or giving unbalanced CPU shares between processes
that have different numbers of threads. Perhaps the greatest disadvantage of user-level threads is that if



Lecture 5: Feb 2 5-3

a single thread performs an I/O request, the OS scheduler may cause the entire process, and all its other
user-level threads, wait until the I/O finishes before returning the process to the run queue. This can prevent
applications with user-level threads from achieving high degrees of concurrency if threads are performing
I/O. Solving these problems requires communication between the kernel and the user-level thread manager.
Another limitation of user level threads is that they cannot be used to spread tasks across multiple cores in
modern CPUs. This is because a process is only scheduled to run on a single CPU core at a time.

5.2.3 Threading Models

Some operating systems such as Solaris support the concept of a Lightweight Process. This is a hybrid
approach where the OS is able to take a thread and map it to one or more lightweight processes. Each
lightweight process can be associated with multiple threads, and each thread can be associated with multiple
processes. This means that if one thread needs to block for I/O, the lightweight process it is associated with
will block, but the other threads hooked to that process may be able to continue running within a different
lightweight process.

Approaches such as this allow for a flexible mapping between threads and processes. When using user-level
threads, the system is using a many-to-one model since many threads are allocated to each process. Kernel
level threads use a one-to-one model since each thread is given a process. The Solaris approach of Lightweight
Processes is a two-level threading model where threads can be mapped to either its own process or to several
processes.

5.2.4 Threading Libraries

Thread libraries provide programmers with an API for creating and managing threads. The thread library
can be implemented either completely in user space, or it can be supported by the OS kernel itself.

5.2.4.1 Pthreads

Pthreads is a threading API following the POSIX standard. Pthreads is a library for C programs and
is supported by a variety of operating systems. When a programmer designs an application to use the
Pthreads API, then it can generally be ported between different systems without requiring the source code
to be modified.

5.2.4.2 Java Threads

The Java programming language also provides support for threads directly (as opposed to through an addi-
tional library such as Pthreads). The Java Virtual Machine uses different types of threads depending on the
OS in which it is run. If the host OS does not support kernel threads, then the JVM will used a built-in user
level threads package, otherwise it will use kernel-level threads. In either case, the code used for the java
program is the same; the JVM transparently maps the programmers threads into either kernel or user-level
threads. Since most modern operating systems now support kernel-level threads, the JVM will typically use
kernel threads.



5-4 Lecture 5: Feb 2

5.3 Scheduling

Scheduling is a key concept in computer multitasking and multiprocessing operating systems. It refers to the
way processes are selected to be run, and how they are allocated time on the CPU. The operating system
can support multiple scheduling policies which impact how processes or threads are chosen to be run and in
turn impact the performance seen by applications.

5.3.1 Types of Schedulers

Operating systems often utilize two types of schedulers: a long-term scheduler (also known as an admission
scheduler or high-level) and a short-term scheduler (also known as a dispatcher). The names suggest the
relative frequency with which these functions are performed.

5.3.1.1 Long-term Scheduler

The long-term, or admission, scheduler decides which jobs or processes are to be admitted to the ready queue
and how many processes should be admitted into the ready queue. This controls the total number of jobs
which can be running within the system. In practice, this limit is generally not reached, but if a process
attempts to fork off a large number of processes it will eventually reach an OS defined limit where it will
prevent any further processes from being created. This type of scheduling is very important for a real-time
operating system, as the system’s ability to meet process deadlines may be compromised by the slowdowns
and contention resulting from the admission of more processes than the system can safely handle.

5.3.1.2 Short-term Scheduler

The short-term scheduler (also known as the dispatcher) decides which of the ready, in-memory processes are
to be executed (allocated a CPU) next following a clock interrupt, an IO interrupt, or an operating system
call. Thus the short-term scheduler makes scheduling decisions much more frequently than the long-term
schedulers - a scheduling decision will at a minimum have to be made after every time slice, which can be
as often as every few milliseconds. This scheduler can be preemptive, implying that it is capable of forcibly
removing processes from a CPU when it decides to allocate that CPU to another process, or non-preemptive,
in which case the scheduler is unable to ”force” processes off the CPU.


