
Computer Science Lecture 5, page 1 Computer Science CS377: Operating Systems

Last Class: Processes!

•  A process is the unit of execution.
•  Processes are represented as Process Control Blocks in the OS

–  PCBs contain process state, scheduling and memory management
information, etc

•  A process is either New, Ready, Waiting, Running, or Terminated.
•  On a uniprocessor, there is at most one running process at a time.
•  The program currently executing on the CPU is changed by

performing a context switch
•  Processes communicate either with message passing or shared

memory

Computer Science Lecture 5, page 2 Computer Science CS377: Operating Systems

Example Unix Program: Fork!
#include <unistd.h>!
#include <sys/wait.h>!
#include <stdio.h>!

main() { !
 int parentID = getpid(); /* ID of this process */!
 char prgname[1024]; !
 gets(prgname); /* read the name of program we want to start */!
 int cid = fork();!
 if(cid == 0) { /* I'm the child process */!
 execlp(prgname, prgname, 0); /* Load the program */!
 /* If the program named prgname can be started, we never get !
 to this line, because the child program is replaced by prgname */!
 printf("I didn't find program %s\n", prgname);!
 } else { /* I'm the parent process */!
 sleep (1); /* Give my child time to start. */!
 waitpid(cid, 0, 0); /* Wait for my child to terminate. */!
 printf("Program %s finished\n", prgname);!
} }!

Computer Science Lecture 5, page 3 Computer Science CS377: Operating Systems

Example Unix Program: Explanation!
fork() forks a new child process that is a copy of the parent.

execlp() replaces the program of the current process with the
named program.

sleep() suspends execution for at least the specified time.

waitpid() waits for the named process to finish execution.

gets() reads a line from a file.

Computer Science Lecture 5, page 4 Computer Science CS377: Operating Systems

What is happening on the Fork!

Computer Science Lecture 5, page 5 Computer Science CS377: Operating Systems

Process Termination!
•  On process termination, the OS reclaims all resources

assigned to the process.

•  In Unix
–  a process can terminate itself using the exit system call.
–  a process can terminate a child using the kill system

Computer Science Lecture 5, page 6 Computer Science CS377: Operating Systems

Example Unix Program: Process
Termination!

#include <signal.h>!
#include <unistd.h>!
#include <stdio.h>!
main() { !
 int parentID = getpid(); /* ID of this process */!
 int cid = fork();!
 if(cid == 0) { /* I'm the child process */!
 sleep (5); /* I'll exit myself after 5 seconds. */!
 printf ("Quitting child\n");!
 exit (0);!
 printf ("Error! After exit call.!"); /* should never get here

*/!
 } else { /* I'm the parent process */!
 printf ("Type any character to kill the child.\n");!
 char answer[10];!
 gets (answer);!
 if (!kill(cid, SIGKILL)) {!
 printf("Killed the child.\n");!
} } }

Computer Science Lecture 5, page 7 Computer Science CS377: Operating Systems

Cooperating Processes!
•  Any two process are either independent or cooperating
•  Cooperating processes work with each other to accomplish a

single task.
•  Cooperating processes can

–  improve performance by overlapping activities or performing work in
parallel,

–  enable an application to achieve a better program structure as a set of
cooperating processes, where each is smaller than a single monolithic
program, and

–  easily share information between tasks.

!Distributed and parallel processing is the wave of the future. To
program these machines, we must cooperate and coordinate
between separate processes.

Computer Science Lecture 5, page 8 Computer Science CS377: Operating Systems CS377: Operating Systems

Cooperating Processes: Producers and
Consumers!

n = 100 //max outstanding items
in = 0
out = 0
producer consumer

 repeat forever{ repeat forever{
 … //Make sure buffer not empty
 nextp = produce item while in = out do no-opt
 while in+1 mod n = out nextc = buffer[out]
 do no-opt out = out+1 mod n
 buffer[in] = nextp …
 in = in+1 mod n consume nextc
 } }

•  Producers and consumers can communicate using message passing or shared
memory

Computer Science Lecture 5, page 9 Computer Science CS377: Operating Systems CS377: Operating Systems

Communication using Message
Passing!

 main()
 …
 if (fork() != 0) producerSR;
 else consumerSR;
 end

producerSR consumerSR
 repeat repeat
 … receive(nextc, producer)
 produce item nextp …
 … consume item nextc
 send(nextp, consumer) …

Computer Science Lecture 5, page 10 Computer Science CS377: Operating Systems CS377: Operating Systems

Message Passing!
•  Distributed systems typically communicate using message passing
•  Each process needs to be able to name the other process.
•  The consumer is assumed to have an infinite buffer size.
•  A bounded buffer would require the tests in the previous slide, and

communication of the in and out variables (in from producer to consumer, out
from consumer to producer).

•  OS keeps track of messages (copies them, notifies receiving process, etc.).

!How would you use message passing to implement a
 single producer and multiple consumers?

Computer Science Lecture 5, page 11 Computer Science CS377: Operating Systems CS377: Operating Systems

Communication using Shared Memory!

•  Establish a mapping between the process's address space to a
named memory object that may be shared across processes

•  The mmap(…) systems call performs this function.

•  Fork processes that need to share the data structure.

Computer Science Lecture 5, page 12 Computer Science CS377: Operating Systems CS377: Operating Systems

Shared Memory Example!
 main()
 …
 mmap(..., in, out, PROT_WRITE, PROT_SHARED, …);
 in = 0;
 out = 0;
 if (fork != 0) produce();
 else consumer();
 end

producer consumer
 repeat repeat
 … while in = out do no-op
 produce item nextp nextc = buffer[out]
 … out = out+1 mod n
 while in+1 mod n = out do no-opt …
 buffer[in] = nextp consume item nextc
 in = in+1 mod n …

Computer Science Lecture 5, page 13 Computer Science CS377: Operating Systems

Today: Threads!

•  What are threads?

•  Where should we implement threads? In the kernel? In a user
level threads package?

•  How should we schedule threads (or processes) onto the CPU?

Computer Science Lecture 5, page 14 Computer Science CS377: Operating Systems

Processes versus Threads!
•  A process defines the address space, text, resources, etc.,
•  A thread defines a single sequential execution stream within a

process (PC, stack, registers).
•  Threads extract the thread of control information from the

process
•  Threads are bound to a single process.
•  Each process may have multiple threads of control within it.

–  The address space of a process is shared among all its threads
–  No system calls are required to cooperate among threads
–  Simpler than message passing and shared-memory

Computer Science Lecture 5, page 15 Computer Science CS377: Operating Systems

Single and Multithreaded Processes!

Computer Science Lecture 5, page 16 Computer Science CS377: Operating Systems

Classifying Threaded Systems!
Operating Systems can support one or many address spaces, and one or many

threads per address space.

Computer Science Lecture 5, page 17 Computer Science CS377: Operating Systems

Example Threaded Program!

•  Forking a thread can be a system call to the kernel, or a
procedure call to a thread library (user code).

Computer Science Lecture 5, page 18 Computer Science CS377: Operating Systems

Kernel Threads!

•  A kernel thread, also known as a lightweight process, is a thread
that the operating system knows about.

•  Switching between kernel threads of the same process requires a
small context switch.
–  The values of registers, program counter, and stack pointer must be

changed.
–  Memory management information does not need to be changed since the

threads share an address space.

•  The kernel must manage and schedule threads (as well as
processes), but it can use the same process scheduling algorithms.

!Switching between kernel threads is slightly faster than
 switching between processes.

Computer Science Lecture 5, page 19 Computer Science CS377: Operating Systems

User-Level Threads!
•  A user-level thread is a thread that the OS does not know about.

•  The OS only knows about the process containing the threads.

•  The OS only schedules the process, not the threads within the
process.

•  The programmer uses a thread library to manage threads (create
and delete them, synchronize them, and schedule them).

Computer Science Lecture 5, page 20 Computer Science CS377: Operating Systems

User-Level Threads!

Computer Science Lecture 5, page 21 Computer Science CS377: Operating Systems

User-Level Threads: Advantages!
•  There is no context switch involved when switching threads.
•  User-level thread scheduling is more flexible

–  A user-level code can define a problem dependent thread scheduling policy.
–  Each process might use a different scheduling algorithm for its own threads.
–  A thread can voluntarily give up the processor by telling the scheduler it

will yield to other threads.

•  User-level threads do not require system calls to create them or
context switches to move between them

! User-level threads are typically much faster than kernel
threads

Computer Science Lecture 5, page 22 Computer Science CS377: Operating Systems

User-Level Threads: Disadvantages!
•  Since the OS does not know about the existence of the user-level

threads, it may make poor scheduling decisions:
–  It might run a process that only has idle threads.
–  If a user-level thread is waiting for I/O, the entire process will wait.
–  Solving this problem requires communication between the kernel and the

user-level thread manager.

•  Since the OS just knows about the process, it schedules the
process the same way as other processes, regardless of the
number of user threads.

•  For kernel threads, the more threads a process creates, the more
time slices the OS will dedicate to it.

Computer Science Lecture 5, page 23 Computer Science CS377: Operating Systems

Example: Kernel and User-Level
Threads in Solaris!

Computer Science Lecture 5, page 24 Computer Science CS377: Operating Systems

Threading Models!

•  Many-to-one, one-to-one, many-to-many and two-level

Computer Science Lecture 5, page 25 Computer Science CS377: Operating Systems

Two-level Model!

Computer Science Lecture 5, page 26 Computer Science CS377: Operating Systems

Thread Libraries!

•  Thread library provides programmer with API for
creating and managing threads

•  Two primary ways of implementing
–  Library entirely in user space
–  Kernel-level library supported by the OS

Computer Science Lecture 5, page 27 Computer Science CS377: Operating Systems

Pthreads!
•  May be provided either as user-level or kernel-level
•  A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization
•  API specifies behavior of the thread library,

implementation is up to development of the library
•  Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

•  WIN32 Threads: Similar to Posix, but for Windows

Computer Science Lecture 5, page 28 Computer Science CS377: Operating Systems

Java Threads!
•  Java threads are managed by the JVM

•  Typically implemented using the threads model
provided by underlying OS

•  Java threads may be created by:

–  Extending Thread class
–  Implementing the Runnable interface

Computer Science Lecture 5, page 29 Computer Science CS377: Operating Systems

Examples!

Pthreads:!
 pthread_attr_init(&attr); /* set default attrributes */!
 pthread_create(&tid, &attr, sum, ¶m);!

Win32 threads!
ThreadHandle = CreateThread(NULL, 0, Sum, &Param, 0, &ThreadID);!

Java Threads:!

Sum sumObject = new Sum();!
Thread t = new Thread(new Summation(param, SumObject));!
t.start(); // start the thread !

Computer Science Lecture 5, page 30 Computer Science CS377: Operating Systems

Scheduling Processes!
•  Multiprogramming: running more than one process

at a time enables the OS to increase system utilization
and throughput by overlapping I/O and CPU activities.

•  Process Execution State

•  All of the processes that the OS is currently managing
reside in one and only one of these state queues.

Computer Science Lecture 5, page 31 Computer Science CS377: Operating Systems

Scheduling Processes!
•  Long Term Scheduling: How does the OS determine the degree

of multiprogramming, i.e., the number of jobs executing at once
in the primary memory?

•  Short Term Scheduling: How does (or should) the OS select a
process from the ready queue to execute?

–  Policy Goals
–  Policy Options
–  Implementation considerations

Computer Science Lecture 5, page 32 Computer Science CS377: Operating Systems

Short Term Scheduling!
•  The kernel runs the scheduler at least when

1.  a process switches from running to waiting,
2.  an interrupt occurs, or
3.  a process is created or terminated.

•  Non-preemptive system: the scheduler must wait for
one of these events

•  Preemptive system: the scheduler can interrupt a
running process

Computer Science Lecture 5, page 33 Computer Science CS377: Operating Systems

Criteria for Comparing Scheduling Algorithms!

•  CPU Utilization The percentage of time that the CPU is
busy.

•  Throughput The number of processes completing in a unit
of time.

•  Turnaround time The length of time it takes to run a
process from initialization to termination, including all the
waiting time.

•  Waiting time The total amount of time that a process is in
the ready queue.

•  Response time The time between when a process is ready to
run and its next I/O request.

Computer Science Lecture 5, page 34 Computer Science CS377: Operating Systems

Scheduling Policies !
Ideally, choose a CPU scheduler that optimizes all criteria

simultaneously (utilization, throughput,..), but this is not
generally possible

Instead, choose a scheduling algorithm based on its ability to satisfy
a policy

•  Minimize average response time - provide output to the user as quickly as
possible and process their input as soon as it is received.

•  Minimize variance of response time - in interactive systems, predictability may
be more important than a low average with a high variance.

•  Maximize throughput - two components
–  minimize overhead (OS overhead, context switching)
–  efficient use of system resources (CPU, I/O devices)

•  Minimize waiting time - give each process the same amount of time on the
processor. This might actually increase average response time.

Computer Science Lecture 5, page 35 Computer Science CS377: Operating Systems

Scheduling Policies!
Simplifying Assumptions

•  One process per user
•  One thread per process
•  Processes are independent

Researchers developed these algorithms in the 70's when these
assumptions were more realistic, and it is still an open problem
how to relax these assumptions.

Computer Science Lecture 5, page 36 Computer Science CS377: Operating Systems

Scheduling Algorithms: A Snapshot!

FCFS: First Come, First Served

Round Robin: Use a time slice and preemption to alternate jobs.

SJF: Shortest Job First

Multilevel Feedback Queues: Round robin on each priority queue.

Lottery Scheduling: Jobs get tickets and scheduler randomly
picks winning ticket.

Computer Science Lecture 5, page 37 Computer Science CS377: Operating Systems

Scheduling Policies!

FCFS: First-Come-First-Served (or FIFO: First-In-First-Out)

•  The scheduler executes jobs to completion in arrival order.
•  In early FCFS schedulers, the job did not relinquish the CPU even

when it was doing I/O.
•  We will assume a FCFS scheduler that runs when processes are

blocked on I/O, but that is non-preemptive, i.e., the job keeps the
CPU until it blocks (say on an I/O device).

Computer Science Lecture 5, page 38 Computer Science CS377: Operating Systems

FCFS Scheduling Policy: Example!

•  If processes arrive 1 time unit apart, what is the average
wait time in these three cases?

Computer Science Lecture 5, page 39 Computer Science CS377: Operating Systems

FCFS: Advantages and Disadvantages!

Advantage: simple

Disadvantages:
•  average wait time is highly variable as short jobs may wait behind

long jobs.

•  may lead to poor overlap of I/O and CPU since CPU-bound
processes will force I/O bound processes to wait for the CPU,
leaving the I/O devices idle

Computer Science Lecture 5, page 40 Computer Science CS377: Operating Systems

Summary!

•  Thread: a single execution stream within a process
•  Switching between user-level threads is faster than between kernel

threads since a context switch is not required.
•  User-level threads may result in the kernel making poor

scheduling decisions, resulting in slower process execution than if
kernel threads were used.

•  Many scheduling algorithms exist. Selecting an algorithm is a
policy decision and should be based on characteristics of
processes being run and goals of operating system (minimize
response time, maximize throughput, ...).

