
Computer Science Lecture 3, page 1 Computer Science CS377: Operating Systems

Last Class: OS and Computer Architecture!

•  CPU, memory, I/O devices, network card, system bus

Network
card

System bus

Computer Science Lecture 3, page 2 Computer Science CS377: Operating Systems

Last Class: OS and Computer Architecture!

OS Service Hardware Support
Protection Kernel/user mode, protected

instructions, base/limit registers

Interrupts Interrupt vectors

System calls Trap instructions and trap vectors

I/O Interrupts and memory mapping

Scheduling, error recovery,
accounting

Timer

Syncronization Atomic instructions

Virtual memory Translation look-aside buffers

Computer Science Lecture 3, page 3 Computer Science CS377: Operating Systems

Today: OS Structures & Services!
•  Introduce the organization and components in an OS.
•  OS Components

–  Processes
–  Synchronization
–  Memory & Secondary Storage Management
–  File Systems
–  I/O Systems
–  Distributed Systems

•  Four example OS organizations
–  Monolithic kernel
–  Layered architecture
–  Microkernel
–  Modular

Computer Science Lecture 3, page 4 Computer Science CS377: Operating Systems

From the Architecture to the OS to the User!
From the Architecture to the OS to the User: Architectural resources, OS

management, and User Abstractions.

Hardware abstraction Example OS Services User abstraction
Processor Process management, Scheduling, Traps,

protection, accounting, synchronization
Process

Memory Management, Protection, virtual memory Address spaces

I/O devices Concurrency with CPU, Interrupt
handling

Terminal, mouse, printer,
system calls

File System File management, Persistence Files

Distributed systems Networking, security, distributed file
system

Remote procedure calls,
network file system

Computer Science Lecture 3, page 5 Computer Science CS377: Operating Systems

Processes!

•  The OS manages a variety of activities:
–  User programs
–  Batch jobs and command scripts
–  System programs: printers, spoolers, name servers, file servers, network

listeners, etc.

•  Each of these activities is encapsulated in a process.
•  A process includes the execution context (PC, registers, VM,

resources, etc.) and all the other information the activity needs to
run.

•  A process is not a program. A process is one instance of a
program in execution. Many processes can be running the same
program. Processes are independent entities.

Computer Science Lecture 3, page 6 Computer Science CS377: Operating Systems

OS and Processes!

•  The OS creates, deletes, suspends, and resumes processes.

•  The OS schedules and manages processes.

•  The OS manages inter-process communication and
synchronization.

•  The OS allocates resources to processes.

Computer Science Lecture 3, page 7 Computer Science CS377: Operating Systems

Synchronization Example:!
Banking transactions

•  Cooperating processes on a single account: ATM machine
transaction, balance computation, Monthly interest computation
and addition.

•  All of the processes are trying to access the same account
simultaneously. What can happen?

Computer Science Lecture 3, page 8 Computer Science CS377: Operating Systems

Memory & Secondary Storage Management!

Main memory
•  is the direct access storage for the CPU.
•  Processes must be stored in main memory to execute.

•  The OS must
–  allocate memory space for processes,
–  deallocate memory space,
–  maintain the mappings from virtual to physical memory (page tables),
–  decide how much memory to allocate to each process, and when a process

should be removed from memory (policies).

Computer Science Lecture 3, page 9 Computer Science CS377: Operating Systems

File System!
Secondary storage devices (disks) are too crude to use directly for

long term storage.

•  The file system provides logical objects and operations on these
objects (files).

•  A file is the long-term storage entity: a named collection of
persistent information that can be read or written.

•  File systems support directories which contain the names of files
and other directories along with additional information about the
files and directories (e.g., when they were created and last
modified).

Computer Science Lecture 3, page 10 Computer Science CS377: Operating Systems

File System Management!

•  The File System provides file management, a standard interface to
–  create and delete files and directories
–  manipulate (read, write, extend, rename, copy, protect) files and directories
–  map files onto secondary storage

•  The File System also provides general services such as backups,
maintaining mapping information, accounting, and quotas.

Computer Science Lecture 3, page 11 Computer Science CS377: Operating Systems

Secondary Storage (disk)!
•  Secondary Storage = persistent memory (endures system failures)
•  Low-level OS routines: responsible for low-level disk functions,

such as scheduling of disk operations, head movement, and error
handling.
–  These routines may also be responsible for managing the disk space (for

example, keeping track of the free space).
–  The line between managing the disk space and the file system is very fuzzy,

these routines are sometimes in the file system.

•  Example: A program executable is stored in a file on disk. To
execute a program, the OS must load the program from disk into
memory.

Computer Science Lecture 3, page 12 Computer Science CS377: Operating Systems

I/O Systems!

The I/O system supports communication with external devices:
terminal, keyboard, printer, mouse, network card

The I/O System:
•  Supports buffering and spooling of I/O
•  Provides a general device driver interface, hiding the differences

among devices, often mimicking the file system interface
•  Provides device driver implementations specific to individual

devices.

Computer Science Lecture 3, page 13 Computer Science CS377: Operating Systems

Distributed Systems!
•  A distributed system is a collection of processors that do not

share memory or a clock.
–  To use non-local resources in a distributed system, processes must

communicate over a network,
–  The OS must provide additional mechanisms for dealing with
–  failures and deadlock that are not encountered in a centralized system.

•  The OS can support a distributed file system on a distributed
system.

–  Users, servers, and storage devices are all dispersed among the various
sites.

–  The OS must carry out its file services across the network and manage
multiple, independent storage devices.

Computer Science Lecture 3, page 14 Computer Science CS377: Operating Systems

System Calls!

•  Programming interface to the services provided by the OS
•  Typically written in a high-level language (C or C++)
•  Mostly accessed by programs via a high-level Application

Program Interface (API) rather than direct system call use
•  Three most common APIs are Win32 API for Windows, POSIX

API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)

•  Why use APIs rather than system calls?

Computer Science Lecture 3, page 15 Computer Science CS377: Operating Systems

Example of Standard API!

•  Consider the ReadFile() function in the
•  Win32 API—a function for reading from a file

•  A description of the parameters passed to ReadFile()
–  HANDLE file—the file to be read
–  LPVOID buffer—a buffer where the data will be read into and written from
–  DWORD bytesToRead—the number of bytes to be read into the buffer
–  LPDWORD bytesRead—the number of bytes read during the last read
–  LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Computer Science Lecture 3, page 16 Computer Science CS377: Operating Systems

System Call Implementation!

•  Typically, a number associated with each system call
–  System-call interface maintains a table indexed according to these numbers

•  The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values

•  The caller need know nothing about how the system call is
implemented
–  Just needs to obey API and understand what OS will do as a result call
–  Most details of OS interface hidden from programmer by API

•  Managed by run-time support library (set of functions built into libraries
included with compiler)

Computer Science Lecture 3, page 17 Computer Science CS377: Operating Systems

API – System Call – OS Relationship!

Computer Science Lecture 3, page 18 Computer Science CS377: Operating Systems

Standard C Library Example!
•  C program invoking printf() library call, which

calls write() system call

Computer Science Lecture 3, page 19 Computer Science CS377: Operating Systems

System Call Parameter Passing!

•  Often, more information is required than simply identity of
desired system call
–  Exact type and amount of information vary according to OS and call

•  Three general methods used to pass parameters to the OS
–  Simplest: pass the parameters in registers

•  In some cases, may be more parameters than registers
–  Parameters stored in a block, or table, in memory, and address of block

passed as a parameter in a register
•  This approach taken by Linux and Solaris

–  Parameters placed, or pushed, onto the stack by the program and popped off
the stack by the operating system

–  Block and stack methods do not limit the number or length of parameters
being passed

Computer Science Lecture 3, page 20 Computer Science CS377: Operating Systems

Examples of Windows and Unix System Calls!

Computer Science Lecture 3, page 21 Computer Science CS377: Operating Systems

One Basic OS Structure!

•  The kernel is the protected part of the OS that runs in
kernel mode, protecting the critical OS data structures
and device registers from user programs.

•  Debate about what functionality goes into the kernel
(above figure: UNIX)

Computer Science Lecture 3, page 22 Computer Science CS377: Operating Systems

Layered OS design!

Layer N: uses layer N-1 and provides new functionality to N+1
•  Advantages: modularity, simplicity, portability, ease of

design/debugging
•  Disadvantage - communication overhead between layers,

extra copying, book-keeping

User programs

Device drivers
Virtual memory

I/O channel
Cpu scheduler

Hardware

Computer Science Lecture 3, page 23 Computer Science CS377: Operating Systems

Microkernel!

•  Small kernel that provides communication (message
passing) and other basic functionality
•  other OS functionality implemented as user-space processes

Computer Science Lecture 3, page 24 Computer Science CS377: Operating Systems

Microkernel Features!
•  Goal: to minimize what goes in the kernel (mechanism, no

policy), implementing as much of the OS in User-Level processes
as possible.

•  Advantages
–  better reliability, easier extension and customization
–  mediocre performance (unfortunately)

•  First Microkernel was Hydra (CMU '70). Current systems include
Chorus (France) and Mach (CMU).

Computer Science Lecture 3, page 25 Computer Science CS377: Operating Systems

Mac OS X - hybrid approach!

•  Layered system: Mach microkernel (mem, RPC, IPC) + BSD
(threads, CLI, networking, filesystem) + user-level services (GUI)

Computer Science Lecture 3, page 26 Computer Science CS377: Operating Systems

Modules!

•  Most modern operating systems implement kernel
modules
–  Uses object-oriented approach
–  Each core component is separate
–  Each talks to the others over known interfaces
–  Each is loadable as needed within the kernel

•  Overall, similar to layers but with more flexible

Computer Science Lecture 3, page 27 Computer Science CS377: Operating Systems

Solaris Modular Approach!

Computer Science Lecture 3, page 28 Computer Science CS377: Operating Systems

Summary!

•  Big Design Issue: How do we make the OS efficient, reliable, and
extensible?

•  General OS Philosophy: The design and implementation of an
OS involves a constant tradeoff between simplicity and
performance. As a general rule, strive for simplicity except when
you have a strong reason to believe that you need to make a
particular component complicated to achieve acceptable
performance (strong reason = simulation or evaluation study)

