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Last Class: OS and Computer Architecture!

•  CPU, memory, I/O devices, network card, system bus 

Network 
card 

System bus 
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Last Class: OS and Computer Architecture!

OS Service Hardware Support 
Protection Kernel/user mode, protected 

instructions, base/limit registers 

Interrupts Interrupt vectors 

System calls Trap instructions and trap vectors 

I/O Interrupts and memory mapping 

Scheduling, error recovery, 
accounting 

Timer 

Syncronization Atomic instructions 

Virtual memory Translation look-aside buffers 
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Today: OS Structures & Services!
•  Introduce the organization and components in an OS. 
•  OS Components 

–  Processes 
–  Synchronization 
–  Memory & Secondary Storage Management 
–  File Systems 
–  I/O Systems 
–  Distributed Systems 

•  Four example OS organizations 
–  Monolithic kernel 
–  Layered architecture 
–  Microkernel 
–  Modular 
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From the Architecture to the OS to the User!
From the Architecture to the OS to the User: Architectural resources, OS 

management, and User Abstractions. 

Hardware abstraction Example OS Services User abstraction 
Processor Process management, Scheduling,  Traps, 

protection, accounting, synchronization 
Process 

Memory Management, Protection, virtual memory Address spaces 

I/O devices Concurrency with CPU, Interrupt 
handling 

Terminal, mouse, printer, 
system calls 

File System File management, Persistence Files 

Distributed systems Networking, security, distributed file 
system 

Remote procedure calls, 
network file system 
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Processes!

•  The OS manages a variety of activities: 
–  User programs 
–  Batch jobs and command scripts 
–  System programs: printers, spoolers, name servers, file servers, network 

listeners, etc. 

•  Each of these activities is encapsulated in a process. 
•  A process includes the execution context (PC, registers, VM, 

resources, etc.) and all the other information the activity needs to 
run. 

•  A process is not a program. A process is one instance of a 
program in execution.  Many processes can be running the same 
program.  Processes are independent entities. 
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OS and Processes!

•  The OS creates, deletes, suspends, and resumes processes. 

•  The OS schedules and manages processes. 

•  The OS manages inter-process communication and 
synchronization. 

•  The OS allocates resources to processes. 
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Synchronization Example:!
Banking transactions 

•  Cooperating processes on a single account: ATM machine 
transaction,  balance computation, Monthly interest computation 
and addition.  

•  All of the processes are trying to access the same account 
simultaneously.  What can happen? 
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Memory & Secondary Storage Management!

Main memory 
•  is the direct access storage for the CPU. 
•  Processes must be stored in main memory to execute. 

•  The OS must 
–  allocate memory space for processes, 
–  deallocate memory space, 
–  maintain the mappings from virtual to physical memory (page tables), 
–  decide how much memory to allocate to each process, and when a process 

should be removed from memory (policies). 
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File System!
Secondary storage devices (disks) are too crude to use directly for 

long term storage. 

•  The file system provides logical objects and operations on these 
objects (files). 

•  A file is the long-term storage entity: a named collection of 
persistent information that can be read or written. 

•  File systems support directories which contain the names of files 
and other directories along with additional information about the 
files and directories (e.g., when they were created and last 
modified). 
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File System Management!

•  The File System provides file management, a standard interface to 
–  create and delete files and directories 
–  manipulate (read, write, extend, rename, copy, protect) files and directories 
–  map files onto secondary storage 

•  The File System also provides general services such as backups, 
maintaining mapping information, accounting, and quotas. 
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Secondary Storage (disk)!
•  Secondary Storage = persistent memory (endures system failures) 
•  Low-level OS routines: responsible for low-level disk functions, 

such as scheduling of disk operations, head movement, and error 
handling. 
–  These routines may also be responsible for managing the disk space (for 

example, keeping track of the free space). 
–  The line between managing the disk space and the file system is very fuzzy, 

these routines are sometimes in the file system. 

•  Example:  A program executable is stored in a file on disk.  To 
execute a program, the OS must load the program from disk into 
memory. 
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I/O Systems!

The I/O system supports communication with external devices: 
terminal, keyboard, printer, mouse, network card 

The I/O System: 
•  Supports buffering and spooling of I/O 
•  Provides a general device driver interface, hiding the differences 

among devices, often mimicking the file system interface 
•  Provides device driver implementations specific to individual 

devices. 
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Distributed Systems!
•  A distributed system is a collection of processors that do not 

share memory or a clock. 
–  To use non-local resources in a distributed system, processes must 

communicate over a network, 
–  The OS must provide additional mechanisms for dealing with 
–  failures and deadlock that are not encountered in a centralized system. 

•  The OS can support a distributed file system on a distributed 
system. 

–  Users, servers, and storage devices are all dispersed among the various 
sites. 

–  The OS must carry out its file services across the network and manage 
multiple, independent storage devices. 
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System Calls!

•  Programming interface to the services provided by the OS 
•  Typically written in a high-level language (C or C++) 
•  Mostly accessed by programs via a high-level Application 

Program Interface (API) rather than direct system call use 
•  Three most common APIs are Win32 API for Windows, POSIX 

API for POSIX-based systems (including virtually all versions of 
UNIX, Linux, and Mac OS X), and Java API for the Java virtual 
machine (JVM) 

•  Why use APIs rather than system calls? 
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Example of Standard API!

•  Consider the ReadFile() function in the 
•  Win32 API—a function for reading from a file 

•  A description of the parameters passed to ReadFile() 
–  HANDLE file—the file to be read 
–  LPVOID buffer—a buffer where the data will be read into and written from 
–  DWORD bytesToRead—the number of bytes to be read into the buffer 
–  LPDWORD bytesRead—the number of bytes read during the last read 
–  LPOVERLAPPED ovl—indicates if overlapped I/O is being used 
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System Call Implementation!

•  Typically, a number associated with each system call 
–  System-call interface maintains a table indexed according to these numbers 

•  The system call interface invokes intended system call in OS 
kernel and returns status of the system call and any return values 

•  The caller need know nothing about how the system call is 
implemented 
–  Just needs to obey API and understand what OS will do as a result call 
–  Most details of  OS interface hidden from programmer by API   

•  Managed by run-time support library (set of functions built into libraries 
included with compiler) 
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API – System Call – OS Relationship!
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Standard C Library Example!
•  C program invoking printf() library call, which 

calls write() system call 
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System Call Parameter Passing!

•  Often, more information is required than simply identity of 
desired system call 
–  Exact type and amount of information vary according to OS and call 

•  Three general methods used to pass parameters to the OS 
–  Simplest:  pass the parameters in registers 

•   In some cases, may be more parameters than registers 
–  Parameters stored in a block, or table, in memory, and address of block 

passed as a parameter in a register  
•  This approach taken by Linux and Solaris 

–  Parameters placed, or pushed, onto the stack by the program and popped off 
the stack by the operating system 

–  Block and stack methods do not limit the number or length of parameters 
being passed 
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Examples of Windows and Unix System Calls!
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One Basic OS Structure!

•  The kernel is the protected part of the OS that runs in 
kernel mode, protecting the critical OS data structures 
and device registers from user programs. 

•   Debate about what functionality goes into the kernel 
(above figure: UNIX) 
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Layered OS design!

Layer N: uses layer N-1 and provides new functionality to N+1 
•  Advantages: modularity, simplicity, portability, ease of 

design/debugging 
•  Disadvantage - communication overhead between layers, 

extra copying, book-keeping 

User programs 

Device drivers 
Virtual memory 

I/O channel 
Cpu scheduler 

Hardware 
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Microkernel!

•  Small kernel that provides communication (message 
passing) and other basic functionality 
•  other OS functionality implemented as user-space processes 
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Microkernel Features!
•  Goal: to minimize what goes in the kernel (mechanism, no 

policy), implementing as much of the OS in User-Level processes 
as possible. 

•  Advantages 
–  better reliability, easier extension and customization 
–  mediocre performance (unfortunately) 

•  First Microkernel was Hydra (CMU '70). Current systems include 
Chorus (France) and Mach (CMU). 
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Mac OS X - hybrid approach!

•  Layered system: Mach microkernel (mem, RPC, IPC) + BSD 
(threads, CLI, networking, filesystem) + user-level services (GUI) 
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Modules!

•  Most modern operating systems implement kernel 
modules 
–  Uses object-oriented approach 
–  Each core component is separate 
–  Each talks to the others over known interfaces 
–  Each is loadable as needed within the kernel 

•  Overall, similar to layers but with more flexible 
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Solaris Modular Approach!
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Summary!

•  Big Design Issue: How do we make the OS efficient, reliable, and 
extensible? 

•  General OS Philosophy: The design and implementation of an 
OS involves a constant tradeoff between simplicity and 
performance. As a general rule, strive for simplicity except when 
you have a strong reason to believe that you need to make a 
particular component complicated to achieve acceptable 
performance (strong reason = simulation or evaluation study) 


