Today: Data Centers & Cloud Computing

- Data Centers
- Cloud Computing

CS677: Distributed OS

Lecture 25, page 1

Data Centers

- Large server and storage farms
 - Used by enterprises to run server applications
 - Used by Internet companies
 - Google, Facebook, Youtube, Amazon...
 - Sizes can vary depending on needs

Data Center Architecture

- Traditional: applications run on physical servers
 - Manual mapping of apps to servers
 - Apps can be distributed
 - Storage may be on a SAN or NAS
 - IT admins deal with "change"
- Modern: virtualized data centers
 - App run inside virtual servers; VM mapped onto physical servers
 - Provides flexiblility in mapping from virtual to physical resources

CS677: Distributed OS

Lecture 25, page 3

Virtualized Data Centers

- Resource management is simplified
 - Application can be started from preconfigured VM images / appliances
 - Virtualization layer / hypervisor permits resource allocations to be varied dynamically
 - VMs can be migrated without application down-time

Workload Management

- Internet applications => dynamic workloads
- How much capacity to allocate to an application?
 - Incorrect workload estimate: over- or under-provision capacity
 - Major issue for internet facing applications
 - Workload surges / flash crowds cause overloads
 - Long-term incremental growth (workload doubles every few months for many newly popular apps)
 - Traditional approach: IT admins estimate peak workloads and provision sufficient servers
 - Flash-crowd => react manually by adding capacity
 - Time scale of hours: lost revenue, bad publicity for application

CS677: Distributed OS

Lecture 25, page 5

Dynamic Provisioning

- Track workload and dynamically provision capacity
- Monitor -> Predict -> Provision
- Predictive versus reactive provisioning
 - Predictive: predict future workload and provision
 - Reactive: react whenever capacity falls short of demand
- Traditional data centers: bring up a new server
 - Borrow from Free pool or reclaim under-used server
- Virtualized data center: exploit virtualization to speed up application startup time
 - How is this done?

Computer Science

Energy Management in Data Centers

- Energy: major component of operational cost of data centers
 - Large data centers have energy bills of several million \$.
 - Where does it come from?
 - Power for servers and cooling
- Data centers also have a large carbon footprint
- How to reduce energy usage?
- Need energy-proportional systems
 - Energy proportionality: energy use proportional to load
 - But: current hardware not energy proportional

Computer Science

CS677: Distributed OS

Lecture 25, page 7

Energy Management

- Many approaches possible
- Within a server:
 - Shut-down certain components (cores, disks) when idling or at low loads
 - Use DVFS for CPU
- Most effective: shutdown servers you don't need
 - Consolidate workload onto a smaller # of servers
 - Turn others off
- Thermal management: move workload to cooling or move cooling to where workloads are
 - Requires sensors and intelligent cooling systems

Container-based Data Centers

- Modular design
- No expensive buildings needed
- Plug and play: plug power, network, cooling vent

CS677: Distributed OS

Lecture 25, page 9

Example: Container DC

- Courtesy: Dan Reed, Microsoft
 - Talk at NSF workshop
- Benefits of MS Gen 4 data ctr
 - Scalable
 - Plug and play
 - Pre-assembled
 - Rapid deployment
 - Reduced construction

CS677: Distributed OS

Cloud Computing

- Data centers that rent servers/ storage
- Cloud: virtualized data center with self-service web portal
- Any one with a "credit card" can rent servers
- Automated allocation of servers
- Use virtualized architecture
- Examples: Amazon EC2, Azure, New servers

CS677: Distributed OS

Lecture 25, page 11

Cloud Models

- Private clouds versus Public Clouds
 - Who owns and runs the infrastructure?
- What is being rented?
 - Infrastructure as a service (rent barebone servers)
 - Platform as a service (google app engine)
 - Software as a service (gmail, online backup, Salesforce.com)

Pricing and Usage Model

- Fine-grain pricing model
 - $-\,$ Rent resources by the hour or by I/O
 - Pay as you go (pay for only what you use)
- Can vary capacity as needed
 - No need to build your own IT infrastructure for peaks needs

CS677: Distributed OS

Lecture 25, page 13

Amazon EC2 Case Study

- Virtualized servers
 - Different sizes / instances
- Storage: Simple storage service (S3)
 - Elastic block service (EBS)
- Many other services
 - Simple DB
 - Database service
 - Virtual private cloud

