Today: World Wide Web

• WWW principles

• Case Study: web caching as an illustrative example
 – Invalidate versus updates
 – Push versus Pull
 – Cooperation between replicas

Traditional Web-Based Systems

• The overall organization of a traditional Web site.
Web Documents

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Plain</td>
<td>Unformatted text</td>
</tr>
<tr>
<td></td>
<td>HTML</td>
<td>Text including HTML markup commands</td>
</tr>
<tr>
<td></td>
<td>XML</td>
<td>Text including XML markup commands</td>
</tr>
<tr>
<td>Image</td>
<td>GIF</td>
<td>Still image in GIF format</td>
</tr>
<tr>
<td></td>
<td>JPEG</td>
<td>Still image in JPEG format</td>
</tr>
<tr>
<td>Audio</td>
<td>Basic</td>
<td>Audio, 8-bit PCM sampled at 8000 Hz</td>
</tr>
<tr>
<td></td>
<td>Tone</td>
<td>A specific audible tone</td>
</tr>
<tr>
<td>Video</td>
<td>MPEG</td>
<td>Movie in MPEG format</td>
</tr>
<tr>
<td></td>
<td>Pointer</td>
<td>Representation of a pointer device for presentations</td>
</tr>
<tr>
<td>Application</td>
<td>Octet-stream</td>
<td>An uninterpreted byte sequence</td>
</tr>
<tr>
<td></td>
<td>Postscript</td>
<td>A printable document in Postscript</td>
</tr>
<tr>
<td></td>
<td>PDF</td>
<td>A printable document in PDF</td>
</tr>
<tr>
<td>Multipart</td>
<td>Mixed</td>
<td>Independent parts in the specified order</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
<td>Parts must be viewed simultaneously</td>
</tr>
</tbody>
</table>

- Six top-level MIME types and some common subtypes.

Multitiered Architectures

- The principle of using server-side CGI programs.
Web Services Fundamentals

- The principle of a Web service.

Processes – Clients

- The logical components of a Web browser.
Processes – Clients

- Using a Web proxy when the browser does not speak FTP (or for caching)

The Apache Web Server

- The general organization of the Apache Web server.
Web Server Clusters

- The principle of using a server cluster in combination with a front end to implement a Web service.

Web Server Clusters (2)

- A scalable content-aware cluster of Web servers.
HTTP Connections

- Using nonpersistent connections.

HTTP Connections

- (b) Using persistent connections.
HTTP Methods

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Request to return the header of a document</td>
</tr>
<tr>
<td>Get</td>
<td>Request to return a document to the client</td>
</tr>
<tr>
<td>Put</td>
<td>Request to store a document</td>
</tr>
<tr>
<td>Post</td>
<td>Provide data that are to be added to a document (collection)</td>
</tr>
<tr>
<td>Delete</td>
<td>Request to delete a document</td>
</tr>
</tbody>
</table>

- Operations supported by HTTP.

Simple Object Access Protocol

```xml
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
  <env:Header>
    <n:alertcontrol xmlns:n="http://example.org/alertcontrol">
      <n:priority>1</n:priority>
      <n:expires>2001-06-22T14:00:00-05:00</n:expires>
    </n:alertcontrol>
  </env:Header>
  <env:Body>
    <m:alert xmlns:m="http://example.org/alert">
      <m:msg>Pick up Mary at school at 2pm</m:msg>
    </m:alert>
  </env:Body>
</env:Envelope>
```

- An example of an XML-based SOAP message.
Web Proxy Caching

- The principle of cooperative caching.

Web Caching

- Example of the web to illustrate caching and replication issues
 - Simpler model: clients are read-only, only server updates data
Consistency Issues

- Web pages tend to be updated over time
 - Some objects are static, others are dynamic
 - Different update frequencies (few minutes to few weeks)
- How can a proxy cache maintain consistency of cached data?
 - Send invalidate or update
 - Push versus pull

Push-based Approach

- Server tracks all proxies that have requested objects
- If a web page is modified, notify each proxy
- Notification types
 - Indicate object has changed [invalidate]
 - Send new version of object [update]
- How to decide between invalidate and updates?
 - Pros and cons?
 - One approach: send updates for more frequent objects, invalidate for rest
Push-based Approaches

- Advantages
 - Provide tight consistency [minimal stale data]
 - Proxies can be passive
- Disadvantages
 - Need to maintain state at the server
 - Recall that HTTP is stateless
 - Need mechanisms beyond HTTP
 - State may need to be maintained indefinitely
 - Not resilient to server crashes

Pull-based Approaches

- Proxy is entirely responsible for maintaining consistency
- Proxy periodically polls the server to see if object has changed
 - Use if-modified-since HTTP messages
- Key question: when should a proxy poll?
 - Server-assigned Time-to-Live (TTL) values
 - No guarantee if the object will change in the interim
Pull-based Approach: Intelligent Polling

- Proxy can dynamically determine the refresh interval
 - Compute based on past observations
 - Start with a conservative refresh interval
 - Increase interval if object has not changed between two successive polls
 - Decrease interval if object is updated between two polls
 - Adaptive: No prior knowledge of object characteristics needed

Pull-based Approach

- Advantages
 - Implementation using HTTP (If-modified-Since)
 - Server remains stateless
 - Resilient to both server and proxy failures
- Disadvantages
 - Weaker consistency guarantees (objects can change between two polls and proxy will contain stale data until next poll)
 - Strong consistency only if poll before every HTTP response
 - More sophisticated proxies required
 - High message overhead
A Hybrid Approach: Leases

- Lease: duration of time for which server agrees to notify proxy of modification
- Issue lease on first request, send notification until expiry
 - Need to renew lease upon expiry
- Smooth tradeoff between state and messages exchanged
 - Zero duration => polling, Infinite leases => server-push
- Efficiency depends on the *lease duration*

![Diagram showing the flow of requests and responses between client, proxy, and server.]

Policies for Leases Duration

- Age-based lease
 - Based on bi-modal nature of object lifetimes
 - Larger the expected lifetime longer the lease
- Renewal-frequency based
 - Based on skewed popularity
 - Proxy at which objects is popular gets longer lease
- Server load based
 - Based on adaptively controlling the state space
 - Shorter leases during heavy load
Cooperative Caching

- Caching infrastructure can have multiple web proxies
 - Proxies can be arranged in a hierarchy or other structures
 - Overlay network of proxies: content distribution network
 - Proxies can cooperate with one another
 - Answer client requests
 - Propagate server notifications

Hierarchical Proxy Caching

Examples: Squid, Harvest
Locating and Accessing Data

Properties
- Lookup is local
- Hit at most 2 hops
- Miss at most 2 hops (1 extra on wrong hint)

CDN Issues
- Which proxy answers a client request?
 - Ideally the “closest” proxy
 - Akamai uses a DNS-based approach
- Propagating notifications
 - Can use multicast or application level multicast to reduce overheads (in push-based approaches)
- Active area of research
 - Numerous research papers available
Adjustment Measures

- The principal working of the Akamai CDN.

Replication of Web Applications