Security: Focus of Control

Three approaches for protection against security threats

a) Protection against invalid operations
b) Protection against unauthorized invocations
c) Protection against unauthorized users

Authentication

• Question: how does a receiver know that remote communicating entity is who it is claimed to be?
Authentication Protocol (ap)

• Ap 1.0
 – Alice to Bob: “I am Alice”
 – Problem: intruder “Trudy” can also send such a message

• Ap 2.0
 – Authenticate source IP address is from Alice’s machine
 – Problem: IP Spoofing (send IP packets with a false address)

• Ap 3.0: use a secret password
 – Alice to Bob: “I am Alice, here is my password” (e.g., telnet)
 – Problem: Trudy can intercept Alice’s password by sniffing packets

Authentication Protocol

Ap 3.1: use encryption
 use a symmetric key known to Alice and Bob

• Alice & Bob (only) know secure key for encryption/decryption

A to B: msg = encrypt("I am A")
B computes: if decrypt(msg)="I am A"
 then A is verified
 else A is fraudulent

• failure scenarios: playback attack
 – Trudy can intercept Alice’s message and masquerade as Alice at a later time
Authentication Using Nonces

Problem with ap 3.1: same password is used for all sessions

Solution: use a sequence of passwords
pick a "once-in-a-lifetime-only" number (nonce) for each session

Ap 4.0
A to B: msg = "I am A" /* note: unencrypted message! */
B to A: once-in-a-lifetime value, n
A to B: msg2 = encrypt(n) /* use symmetric keys */
B computes: if decrypt(msg2)==n
 then A is verified
 else A is fraudulent

• note similarities to three way handshake and initial sequence number choice
• problems with nonces?

Authentication Using Public Keys

Ap 4.0 uses symmetric keys for authentication
Question: can we use public keys?

symmetry: DA(EA(n)) = EA(DA(n))

AP 5.0
A to B: msg = "I am A"
B to A: once-in-a-lifetime value, n
A to B: msg2 = DA(n)
B computes: if EA(DA(n))==n
 then A is verified
 else A is fraudulent
Problems with Ap 5.0

- Bob needs Alice’s public key for authentication
 - Trudy can impersonate as Alice to Bob
 - Trudy to Bob: msg = “I am Alice”
 - Bob to Alice: nonce n (Trudy intercepts this message)
 - Trudy to Bob: msg2= DT(n)
 - Bob to Alice: send me your public key (Trudy intercepts)
 - Trudy to Bob: send ET (claiming it is EA)
 - Bob: verify ET(DT(n)) == n and authenticates Trudy as Alice!!

- Moral: Ap 5.0 is only as “secure” as public key distribution

Man-in-the-middle Attack

- Trudy impersonates as Alice to Bob and as Bob to Alice
 - Alice Trudy Bob
 - “I am A” “I am A”
 - nonce n
 - DT(n)
 - send me ET
 - ET
 - nonce n
 - DA(n)
 - send me EA
 - EA
 - Bob sends data using ET, Trudy decrypts and forwards it using EA!! (Trudy transparently intercepts every message)
Digital Signatures Using Public Keys

Goals of digital signatures:

- sender cannot repudiate message never sent ("I never sent that")
- receiver cannot fake a received message

Suppose A wants B to "sign" a message M

B sends DB(M) to A
A computes if EB (DB(M)) == M
then B has signed M

Question: can B plausibly deny having sent M?

Message Digests

- Encrypting and decrypting entire messages using digital signatures is computationally expensive
 - Routers routinely exchange data
 - Does not need encryption
 - Needs authentication and verify that data hasn’t changed
- Message digests: like a checksum
 - Hash function H: converts variable length string to fixed length hash
 - Digitally sign H(M)
 - Send M, DA(H(m))
 - Can verify who sent the message and that it has been changed!
- Property of H
 - Given a digest x, it is infeasible to find a message y such that H(y) = x
 - It is infeasible to find any two messages x and y such that H(x) = H(y)
Hash Functions: MD5

- The structure of MD5

Symmetric key exchange: trusted server

Problem: how do distributed entities agree on a key?

Assume: each entity has its own single key, which only it and trusted server know

Server:
- will generate a one-time session key that A and B use to encrypt communication
- will use A and B's single keys to communicate session key to A, B
Key Exchange: Key Distribution Center (1)

- The principle of using a KDC.

![Diagram of Key Exchange: Key Distribution Center (1)]

Authentication Using a Key Distribution Center (2)

- Using a ticket and letting Alice set up a connection to Bob.

![Diagram of Authentication Using a Key Distribution Center (2)]
Authentication Using a Key Distribution Center

(3)

Public Key Exchange

- Mutual authentication in a public-key cryptosystem.
Public key exchange: trusted server

• public key retrieval subject to man-in-middle attack
• locate all public keys in trusted server
• everyone has server's encryption key (ES public)
• suppose A wants to send to B using B's "public" key

![Diffie-Hellman Key Exchange Diagram]

Diffie-Hellman Key Exchange

• How to choose a key without encryption
• Agree on n, g – large integers
• Alice choose secret x, Bob chooses secret y

\[
\begin{align*}
\text{Alice computes } & (g^y \mod n)^x = g^{xy} \mod n \\
\text{Bob computes } & (g^x \mod n)^y = g^{xy} \mod n
\end{align*}
\]
Access Control

- Access control lists
- Capabilities
- Protection domains

Protection Against Intruders: Firewalls

- A common implementation of a firewall.
Firewalls

Firewall: network components (host/router+software) sitting between inside ("us") and outside ("them)

Packet filtering firewalls: drop packets on basis of source or destination address (i.e., IP address, port)

Application gateways: application specific code intercepts, processes and/or relays application specific packets
 - e.g., email of telnet gateways
 - application gateway code can be security hardened
 - can log all activity

Secure Email

- **Requirements:**
 - Secrecy
 - Sender authentication
 - Message integrity
 - Receiver authentication
- **Secrecy**
 - Can use public keys to encrypt messages
 - Inefficient for long messages
 - Use symmetric keys
 - Alice generates a symmetric key K
 - Encrypt message M with K
 - Encrypt K with E_B
 - Send K(M), E_B(K)
 - Bob decrypts using his private key, gets K, decrypts K(M)
Secure Email

- Authentication and Integrity (with no secrecy)
 - Alice applies hash function H to M (H can be MD5)
 - Creates a digital signature $D_A(H(M))$
 - Send M, $D_A(H(M))$ to Bob
- Putting it all together
 - Compute $H(M)$, $D_A(H(M))$
 - $M' = \{ H(M), D_A(H(M)) \}$
 - Generate symmetric key K, compute $K(M')$
 - Encrypt K as $E_B(K)$
 - Send $K(M')$, $E_B(K)$
- Used in PGP (pretty good privacy)

Secure Sockets Layer (SSL)

- SSL: Developed by Netscape
 - Provides data encryption and authentication between web server and client
 - SSL lies above the transport layer
 - Useful for Internet Commerce, secure mail access (IMAP)
 - Features:
 - SSL server authentication
 - Encrypted SSL session
 - SSL client authentication
Secure Socket Layer

• Protocol: https instead of http
 – Browser -> Server: B’s SSL version and preferences
 – S->B: S’s SSL version, preferences, and certificate
 • Certificate: server’s RSA public key encrypted by CA’s private key
 – B: uses its list of CAs and public keys to decrypt S’s public key
 – B->S: generate K, encrypt K with with E_S
 – B->S: “future messages will be encrypted”, and K(m)
 – S->B: “future messages will be encrypted”, and K(m)
 – SSL session begins…

Example: Kerberos (1)

• Assist clients in setting up secure channel with a server
• Auth Server (AS) provides login service
• Ticket granting service (TGS) sets up secure channel
 – Tickets are used to convince the server of the authenticity of the client
 • Single signon: no need to auth to other servers separately
Electronic Payment Systems (1)

- Payment systems based on direct payment between customer and merchant.
 a) Paying in cash.
 b) Using a check.
 c) Using a credit card.

E-cash

- The principle of anonymous electronic cash using blind signatures.
Secure Electronic Transactions (SET)

Security: conclusion

key concerns:
• encryption
• authentication
• key exchange

also:
• increasingly an important area as network connectivity increases
• digital signatures, digital cash, authentication, increasingly important
• an important social concern
• further reading:
 – Crypto Policy Perspectives: S. Landau et al., Aug 1994 CACM
 – www.eff.org