
Computer Science Lecture 9, page 1 CS677: Distributed OS

Last Class: RPCs and RMI!

•  Case Study: Sun RPC

•  Lightweight RPCs

•  Remote Method Invocation (RMI)
–  Design issues

Computer Science Lecture 9, page 2 CS677: Distributed OS

Today: Communication Issues!

•  Message-oriented communication
–  Persistence and synchronicity

•  Stream-oriented communication

Computer Science Lecture 9, page 3 CS677: Distributed OS

Persistence and Synchronicity in Communication !

•  General organization of a communication system in which hosts are connected
through a network

2-20

Computer Science Lecture 9, page 4 CS677: Distributed OS

Persistence!

•  Persistent communication
–  Messages are stored until (next) receiver is ready
–  Examples: email, pony express

Computer Science Lecture 9, page 5 CS677: Distributed OS

Transient Communication!

•  Transient communication
–  Message is stored only so long as sending/receiving

application are executing
–  Discard message if it can’t be delivered to next server/receiver
–  Example: transport-level communication services offer

transient communication
–  Example: Typical network router – discard message if it can’t

be delivered next router or destination

Computer Science Lecture 9, page 6 CS677: Distributed OS

Synchronicity!

•  Asynchronous communication
–  Sender continues immediately after it has submitted the message
–  Need a local buffer at the sending host

•  Synchronous communication
–  Sender blocks until message is stored in a local buffer at the

receiving host or actually delivered to sending
–  Variant: block until receiver processes the message

•  Six combinations of persistence and synchronicity

Computer Science Lecture 9, page 7 CS677: Distributed OS

Persistence and Synchronicity Combinations!

a)  Persistent asynchronous communication (e.g., email)
b)  Persistent synchronous communication

2-22.1

Computer Science Lecture 9, page 8 CS677: Distributed OS

Persistence and Synchronicity Combinations!

c)  Transient asynchronous communication (e.g., UDP)
d)  Receipt-based transient synchronous communication

2-22.2

Computer Science Lecture 9, page 9 CS677: Distributed OS

Persistence and Synchronicity Combinations!

e)  Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RPC)

f)  Response-based transient synchronous communication (RPC)

Computer Science Lecture 9, page 10 CS677: Distributed OS

Message-oriented Transient
Communication!

•  Many distributed systems built on top of simple message-oriented model
–  Example: Berkeley sockets

Computer Science Lecture 9, page 11 CS677: Distributed OS

Berkeley Socket Primitives!

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Computer Science Lecture 9, page 12 CS677: Distributed OS

Message-Passing Interface (MPI)!

•  Sockets designed for network communication (e.g., TCP/IP)
–  Support simple send/receive primitives

•  Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems
–  Need an interface with more advanced primitives

•  Large number of incompatible proprietary libraries and protocols
–  Need for a standard interface

•  Message-passing interface (MPI)
–  Hardware independent
–  Designed for parallel applications (uses transient communication)

•  Key idea: communication between groups of processes
–  Each endpoint is a (groupID, processID) pair

Computer Science Lecture 9, page 13 CS677: Distributed OS

MPI Primitives!
Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Computer Science Lecture 9, page 14 CS677: Distributed OS

Message-oriented Persistent
Communication!

•  Message queuing systems
–  Support asynchronous persistent communication
–  Intermediate storage for message while sender/receiver are

inactive
–  Example application: email

•  Communicate by inserting messages in queues
•  Sender is only guaranteed that message will be

eventually inserted in recipient’s queue
–  No guarantees on when or if the message will be read
–  “Loosely coupled communication”

Computer Science Lecture 9, page 15

Message-Queuing Model (1)!

Computer Science Lecture 9, page 16 CS677: Distributed OS

Message-Queuing Model !

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

Computer Science Lecture 9, page 17

General Architecture of a Message-
Queuing System (2)!

•  Queue manager and relays
–  Relays use an overlay network
–  Relays know about the network topology and how to route

Computer Science Lecture 9, page 18

Message Brokers!

•  Message broker: application level gateway in MQS
–  Convert incoming messages so that they can be understood by

destination (format conversion)
–  Also used for pub-sub systems

Computer Science Lecture 9, page 19

IBMʼs WebSphere MQ!

•  Queue managers manage queues
–  Connected through message channels

•  Message channel agent (MCA)
–  Checks queue, wraps into TCP packet, send to receiving MCA

Computer Science Lecture 9, page 20 CS677: Distributed OS

Stream Oriented Communication!
•  Message-oriented communication: request-response

–  When communication occurs and speed do not affect correctness
•  Timing is crucial in certain forms of communication

–  Examples: audio and video (“continuous media”)
–  30 frames/s video => receive and display a frame every 33ms

•  Characteristics
–  Isochronous communication

•  Data transfers have a maximum bound on end-end delay and
jitter

–  Push mode: no explicit requests for individual data units beyond
the first “play” request

Computer Science Lecture 9, page 21 CS677: Distributed OS

Examples!

Single sender and receiver

One sender
Multiple receivers

Computer Science Lecture 9, page 22

Streams and Quality of Service!
•  Properties for Quality of Service:
•  The required bit rate at which data should be

transported.
•  The maximum delay until a session has been set up
•  The maximum end-to-end delay .
•  The maximum delay variance, or jitter.
•  The maximum round-trip delay.

Computer Science Lecture 9, page 23 CS677: Distributed OS

Quality of Service (QoS)!
•  Time-dependent and other requirements are specified as quality of service (QoS)

–  Requirements/desired guarantees from the underlying systems
–  Application specifies workload and requests a certain service quality
–  Contract between the application and the system

Characteristics of the Input Service Required

• maximum data unit size (bytes)
• Token bucket rate (bytes/sec)
• Toke bucket size (bytes)
• Maximum transmission rate (bytes/
sec)

• Loss sensitivity (bytes)
• Loss interval (µsec)
• Burst loss sensitivity (data units)
• Minimum delay noticed (µsec)
• Maximum delay variation (µsec)
• Quality of guarantee

Computer Science Lecture 9, page 24 CS677: Distributed OS

Specifying QoS: Token bucket!

•  The principle of a token bucket algorithm
–  Parameters (rate r, burst b)
–  Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

Computer Science Lecture 9, page 25 CS677: Distributed OS

Enforcing QoS!

•  Enforce at end-points (e.g., token bucket)
–  No network support needed

•  Mark packets and use router support
–  Differentiated services: expedited & assured forwarding

•  Use buffers at receiver to mask jitter
•  Packet losses

–  Handle using forward error correction
–  Use interleaving to reduce impact

Computer Science Lecture 9, page 26

Enforcing QoS (1)!

Computer Science Lecture 9, page 27

Enforcing QoS (2)!

•  Can also use forward error correction (FEC)

Computer Science Lecture 9, page 28 CS677: Distributed OS

Stream synchronization!

•  Multiple streams:
–  Audio and video; layered video

•  Need to sync prior to playback
–  Timestamp each stream and sync up data units prior to

playback

•  Sender or receiver?
•  App does low-level sync

–  30 fps: image every 33ms, lip-sync with audio

•  Use middleware and specify playback rates

Computer Science Lecture 9, page 29

Synchronization Mechanism!

Computer Science Lecture 9, page 30 CS677: Distributed OS

Multicasting!

•  Group communication
–  IP multicast versus application-level multicast
–  Construct an overlay multicast tree rooted at the sender
–  Send packet down each link in the tree

•  Issues: tree construction, dynamic joins and leaves

Computer Science Lecture 9, page 31

Overlay Construction!

Computer Science Lecture 9, page 32 CS677: Distributed OS

New Topic: Naming!

•  Names are used to share resources, uniquely identify
entities and refer to locations

•  Need to map from name to the entity it refers to
–  E.g., Browser access to www.cnn.com
–  Use name resolution

•  Differences in naming in distributed and non-distributed
systems
–  Distributed systems: naming systems is itself distributed

•  How to name mobile entities?

Computer Science Lecture 9, page 33 CS677: Distributed OS

Example: File Names!
•  Hierarchical directory structure (DAG)

–  Each file name is a unique path in the DAG
–  Resolution of /home/steen/mbox a traversal of the DAG

•  File names are human-friendly

Computer Science Lecture 9, page 34 CS677: Distributed OS

Resolving File Names across Machines!
•  Remote files are accessed using a node name, path name
•  NFS mount protocol: map a remote node onto local DAG

–  Remote files are accessed using local names! (location independence)
–  OS maintains a mount table with the mappings

Computer Science Lecture 9, page 35 CS677: Distributed OS

Name Space Distribution!

•  Naming in large distributed systems
–  System may be global in scope (e.g., Internet, WWW)

•  Name space is organized hierarchically
–  Single root node (like naming files)

•  Name space is distributed and has three logical layers
–  Global layer: highest level nodes (root and a few children)

•  Represent groups of organizations, rare changes
–  Administrational layer: nodes managed by a single organization

•  Typically one node per department, infrequent changes
–  Managerial layer: actual nodes

•  Frequent changes
–  Zone: part of the name space managed by a separate name server

Computer Science Lecture 9, page 36 CS677: Distributed OS

Name Space Distribution Example!

•  An example partitioning of the DNS name space, including
Internet-accessible files, into three layers.

Computer Science Lecture 9, page 37 CS677: Distributed OS

Name Space Distribution !

•  A comparison between name servers for implementing nodes from a large-scale name
space partitioned into a global layer, as an administrational layer, and a managerial layer.

•  The more stable a layer, the longer are the lookups valid (and can be cached longer)

Item Global Administrational Managerial

Geographical scale of network Worldwide Organization Department

Total number of nodes Few Many Vast numbers

Responsiveness to lookups Seconds Milliseconds Immediate

Update propagation Lazy Immediate Immediate

Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes

Computer Science Lecture 9, page 38

Programming Assignment 1!

•  Goal: familiarity with RPCs, threads, sync, distributed
application design

•  Design a multi-tier micro-blogging site

CS677: Distributed OS

Front-end
server

Database
server

Post
Follow

Retrieve

query

Update

