
Computer Science Lecture 8, page 1 CS677: Distributed OS

Last Class: RPCs!

•  RPCs make distributed computations look like local
computations

•  Issues:
–  Parameter passing
–  Binding
–  Failure handling

Computer Science Lecture 8, page 2 CS677: Distributed OS

Today: !

•  Lightweight RPCs

•  Remote Method Invocation (RMI)
–  Design issues

Computer Science Lecture 8, page 3 CS677: Distributed OS

Lightweight RPCs!

•  Many RPCs occur between client and server on same
machine
–  Need to optimize RPCs for this special case => use a

lightweight RPC mechanism (LRPC)

•  Server S exports interface to remote procedures
•  Client C on same machine imports interface
•  OS kernel creates data structures including an argument

stack shared between S and C

Computer Science Lecture 8, page 4 CS677: Distributed OS

Lightweight RPCs!

•  RPC execution
–  Push arguments onto stack
–  Trap to kernel
–  Kernel changes mem map of client to server address space
–  Client thread executes procedure (OS upcall)
–  Thread traps to kernel upon completion
–  Kernel changes the address space back and returns control to

client

•  Called “doors” in Solaris

Computer Science Lecture 8, page 5 CS677: Distributed OS

Doors!

•  Which RPC to use? - run-time bit allows stub to choose between
LRPC and RPC

Computer Science Lecture 8, page 6 CS677: Distributed OS

Other RPC Models!

•  Asynchronous RPC
–  Request-reply behavior often not needed
–  Server can reply as soon as request is received and execute procedure later

•  Deferred-synchronous RPC
–  Use two asynchronous RPCs
–  Client needs a reply but can’t wait for it; server sends reply via another

asynchronous RPC

•  One-way RPC
–  Client does not even wait for an ACK from the server
–  Limitation: reliability not guaranteed (Client does not know if procedure

was executed by the server).

Computer Science Lecture 8, page 7 CS677: Distributed OS

Asynchronous RPC !

a)  The interconnection between client and server in a traditional RPC
b)  The interaction using asynchronous RPC

2-12

Computer Science Lecture 8, page 8 CS677: Distributed OS

 Deferred Synchronous RPC!

•  A client and server interacting through two asynchronous RPCs

2-13

Computer Science Lecture 8, page 9 CS677: Distributed OS

Remote Method Invocation (RMI)!

•  RPCs applied to objects, i.e., instances of a class
–  Class: object-oriented abstraction; module with data and

operations
–  Separation between interface and implementation
–  Interface resides on one machine, implementation on another

•  RMIs support system-wide object references
–  Parameters can be object references

Computer Science Lecture 8, page 10 CS677: Distributed OS

Distributed Objects!

•  When a client binds to a distributed object, load the interface
(“proxy”) into client address space
–  Proxy analogous to stubs

•  Server stub is referred to as a skeleton

Computer Science Lecture 8, page 11 CS677: Distributed OS

Proxies and Skeletons!

•  Proxy: client stub
–  Maintains server ID, endpoint, object ID
–  Sets up and tears down connection with the server
–  [Java:] does serialization of local object parameters
–  In practice, can be downloaded/constructed on the fly (why

can’t this be done for RPCs in general?)

•  Skeleton: server stub
–  Does deserialization and passes parameters to server and sends

result to proxy

Computer Science Lecture 8, page 12 CS677: Distributed OS

Binding a Client to an Object!

a)  (a) Example with implicit binding using only global references
b)  (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

 (a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

 (b)

Computer Science Lecture 8, page 13 CS677: Distributed OS

Parameter Passing!
•  Less restrictive than RPCs.

–  Supports system-wide object references
–  [Java] pass local objects by value, pass remote objects by reference

Computer Science Lecture 8, page 14 CS677: Distributed OS

DCE Distributed-Object Model!

a)  Distributed dynamic objects in DCE.
b)  Distributed named objects

Computer Science Lecture 8, page 15 CS677: Distributed OS

Java RMI!

•  Server
–  Defines interface and implements interface methods
–  Server program

•  Creates server object and registers object with “remote
object” registry

•  Client
–  Looks up server in remote object registry
–  Uses normal method call syntax for remote methods

•  Java tools
–  Rmiregistry: server-side name server
–  Rmic: uses server interface to create client and server stubs

Computer Science Lecture 8, page 16 CS677: Distributed OS

Java RMI and Synchronization!
•  Java supports Monitors: synchronized objects

–  Serializes accesses to objects
–  How does this work for remote objects?

•  Options: block at the client or the server
•  Block at server

–  Can synchronize across multiple proxies
–  Problem: what if the client crashes while blocked?

•  Block at proxy
–  Need to synchronize clients at different machines
–  Explicit distributed locking necessary

•  Java uses proxies for blocking
–  No protection for simultaneous access from different clients
–  Applications need to implement distributed locking

Computer Science Lecture 8, page 17 CS677: Distributed OS

Message-oriented Transient
Communication!

•  Many distributed systems built on top of simple message-oriented model
–  Example: Berkeley sockets

Computer Science Lecture 8, page 18 CS677: Distributed OS

Berkeley Socket Primitives!

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

Computer Science Lecture 8, page 19 CS677: Distributed OS

Message-Passing Interface (MPI)!

•  Sockets designed for network communication (e.g., TCP/IP)
–  Support simple send/receive primitives

•  Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems
–  Need an interface with more advanced primitives

•  Large number of incompatible proprietary libraries and protocols
–  Need for a standard interface

•  Message-passing interface (MPI)
–  Hardware independent
–  Designed for parallel applications (uses transient communication)

•  Key idea: communication between groups of processes
–  Each endpoint is a (groupID, processID) pair

Computer Science Lecture 8, page 20 CS677: Distributed OS

MPI Primitives!
Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

