
Computer Science Lecture 7, page 1 CS677: Distributed OS

Server Clusters!

•  Web applications use tiered architecture
–  Each tier may be optionally replicated; uses a dispatcher
–  Use TCP splicing or handoffs

Computer Science Lecture 7, page 2 CS677: Distributed OS

Server Architecture!

•  Sequential
–  Serve one request at a time
–  Can service multiple requests by employing events and

asynchronous communication

•  Concurrent
–  Server spawns a process or thread to service each request
–  Can also use a pre-spawned pool of threads/processes (apache)

•  Thus servers could be
–  Pure-sequential, event-based, thread-based, process-based

•  Discussion: which architecture is most efficient?

Computer Science Lecture 7, page 3 CS677: Distributed OS

Today: Communication in  
Distributed Systems!

•  Message-oriented Communication
•  Remote Procedure Calls

–  Transparency but poor for passing references
•  Remote Method Invocation

–  RMIs are essentially RPCs but specific to remote objects
–  System wide references passed as parameters

•  Stream-oriented Communication

Computer Science Lecture 7, page 4 CS677: Distributed OS

Communication Between Processes!

•  Unstructured communication
–  Use shared memory or shared data structures

•  Structured communication
–  Use explicit messages (IPCs)

•  Distributed Systems: both need low-level
communication support (why?)

Computer Science Lecture 7, page 5 CS677: Distributed OS

Communication Protocols!

•  Protocols are agreements/rules on communication
•  Protocols could be connection-oriented or connectionless

2-1

Computer Science Lecture 7, page 6 CS677: Distributed OS

Layered Protocols!

•  A typical message as it appears on the network.

2-2

Computer Science Lecture 7, page 7 CS677: Distributed OS

Client-Server TCP!

a)  Normal operation of TCP.
b)  Transactional TCP.

2-4

Computer Science Lecture 7, page 8 CS677: Distributed OS

Middleware Protocols!
•  Middleware: layer that resides between an OS and an application

–  May implement general-purpose protocols that warrant their own layers
•  Example: distributed commit

2-5

Computer Science Lecture 7, page 9 CS677: Distributed OS

To Push or Pull ?!

•  Client-pull architecture
–  Clients pull data from servers (by sending requests)
–  Example: HTTP
–  Pro: stateless servers, failures are each to handle
–  Con: limited scalability

•  Server-push architecture
–  Servers push data to client
–  Example: video streaming, stock tickers
–  Pro: more scalable, Con: stateful servers, less resilient to failure

•  When/how-often to push or pull?

Computer Science Lecture 7, page 10 CS677: Distributed OS

Group Communication!

•  One-to-many communication: useful for distributed
applications

•  Issues:
–  Group characteristics:

•  Static/dynamic, open/closed
–  Group addressing

•  Multicast, broadcast, application-level multicast (unicast)
–  Atomicity
–  Message ordering
–  Scalability

Computer Science Lecture 7, page 11 CS677: Distributed OS

Remote Procedure Calls!

•  Goal: Make distributed computing look like centralized
computing

•  Allow remote services to be called as procedures
–  Transparency with regard to location, implementation,

language

•  Issues
–  How to pass parameters
–  Bindings
–  Semantics in face of errors

•  Two classes: integrated into prog language and separate

Computer Science Lecture 7, page 12 CS677: Distributed OS

Conventional Procedure Call!

a)  Parameter passing in a local
procedure call: the stack before the
call to read

b) The stack while the called procedure is
active

Computer Science Lecture 7, page 13 CS677: Distributed OS

Parameter Passing!

•  Local procedure parameter passing
–  Call-by-value
–  Call-by-reference: arrays, complex data structures

•  Remote procedure calls simulate this through:
–  Stubs – proxies
–  Flattening – marshalling

•  Related issue: global variables are not allowed in RPCs

Computer Science Lecture 7, page 14 CS677: Distributed OS

Client and Server Stubs!

•  Principle of RPC between a client and server program [Birrell&Nelson 1984]

Computer Science Lecture 7, page 15 CS677: Distributed OS

Stubs!

•  Client makes procedure call (just like a local procedure
call) to the client stub

•  Server is written as a standard procedure
•  Stubs take care of packaging arguments and sending

messages
•  Packaging parameters is called marshalling
•  Stub compiler generates stub automatically from specs in

an Interface Definition Language (IDL)
–  Simplifies programmer task

Computer Science Lecture 7, page 16 CS677: Distributed OS

Steps of a Remote Procedure Call!
1.  Client procedure calls client stub in normal way
2.  Client stub builds message, calls local OS
3.  Client's OS sends message to remote OS
4.  Remote OS gives message to server stub
5.  Server stub unpacks parameters, calls server
6.  Server does work, returns result to the stub
7.  Server stub packs it in message, calls local OS
8.  Server's OS sends message to client's OS
9.  Client's OS gives message to client stub
10.  Stub unpacks result, returns to client

Computer Science Lecture 7, page 17 CS677: Distributed OS

Example of an RPC!

2-8

Computer Science Lecture 7, page 18 CS677: Distributed OS

Marshalling!

•  Problem: different machines have different data formats
–  Intel: little endian, SPARC: big endian

•  Solution: use a standard representation
–  Example: external data representation (XDR)

•  Problem: how do we pass pointers?
–  If it points to a well-defined data structure, pass a copy and the server stub

passes a pointer to the local copy

•  What about data structures containing pointers?
–  Prohibit
–  Chase pointers over network

•  Marshalling: transform parameters/results into a byte stream

Computer Science Lecture 7, page 19 CS677: Distributed OS

Binding!

•  Problem: how does a client locate a server?
–  Use Bindings

•  Server
–  Export server interface during initialization
–  Send name, version no, unique identifier, handle (address) to

binder
•  Client

–  First RPC: send message to binder to import server interface
–  Binder: check to see if server has exported interface

•  Return handle and unique identifier to client

Computer Science Lecture 7, page 20 CS677: Distributed OS

Binding: Comments!

•  Exporting and importing incurs overheads
•  Binder can be a bottleneck

–  Use multiple binders
•  Binder can do load balancing

Computer Science Lecture 7, page 21 CS677: Distributed OS

Failure Semantics!

•  Client unable to locate server: return error
•  Lost request messages: simple timeout mechanisms
•  Lost replies: timeout mechanisms

–  Make operation idempotent
–  Use sequence numbers, mark retransmissions

•  Server failures: did failure occur before or after operation?
–  At least once semantics (SUNRPC)
–  At most once
–  No guarantee
–  Exactly once: desirable but difficult to achieve

Computer Science Lecture 7, page 22 CS677: Distributed OS

Failure Semantics!

•  Client failure: what happens to the server computation?
–  Referred to as an orphan
–  Extermination: log at client stub and explicitly kill orphans

•  Overhead of maintaining disk logs
–  Reincarnation: Divide time into epochs between failures and

delete computations from old epochs
–  Gentle reincarnation: upon a new epoch broadcast, try to

locate owner first (delete only if no owner)
–  Expiration: give each RPC a fixed quantum T; explicitly

request extensions
•  Periodic checks with client during long computations

Computer Science Lecture 7, page 23 CS677: Distributed OS

Implementation Issues!
•  Choice of protocol [affects communication costs]

–  Use existing protocol (UDP) or design from scratch
–  Packet size restrictions
–  Reliability in case of multiple packet messages
–  Flow control

•  Copying costs are dominant overheads
–  Need at least 2 copies per message

•  From client to NIC and from server NIC to server
–  As many as 7 copies

•  Stack in stub – message buffer in stub – kernel – NIC –
medium – NIC – kernel – stub – server

–  Scatter-gather operations can reduce overheads

Computer Science Lecture 7, page 24 CS677: Distributed OS

Case Study: SUNRPC!

•  One of the most widely used RPC systems
•  Developed for use with NFS
•  Built on top of UDP or TCP

–  TCP: stream is divided into records
–  UDP: max packet size < 8912 bytes
–  UDP: timeout plus limited number of retransmissions
–  TCP: return error if connection is terminated by server

•  Multiple arguments marshaled into a single structure
•  At-least-once semantics if reply received, at-least-zero semantics

if no reply. With UDP tries at-most-once
•  Use SUN’s eXternal Data Representation (XDR)

–  Big endian order for 32 bit integers, handle arbitrarily large data structures

Computer Science Lecture 7, page 25 CS677: Distributed OS

Binder: Port Mapper!

• Server start-up: create port
• Server stub calls svc_register to
register prog. #, version # with
local port mapper
• Port mapper stores prog #,
version #, and port
• Client start-up: call clnt_create
to locate server port
• Upon return, client can call
procedures at the server

Computer Science Lecture 7, page 26 CS677: Distributed OS

Rpcgen: generating stubs!

•  Q_xdr.c: do XDR conversion
•  Detailed example: later in this course

Computer Science Lecture 7, page 27 CS677: Distributed OS

Summary!

•  RPCs make distributed computations look like local
computations

•  Issues:
–  Parameter passing
–  Binding
–  Failure handling

•  Case Study: SUN RPC

