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Energy in computing

• Power is a significant burden on computing

• 3-year TCO soon to be dominated by power
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“Energy consumption by … data centers could nearly 
double ... (by 2011) to more than 100 billion kWh, 
representing a $7.4 billion annual electricity cost”
	

                                                 [EPA Report 2007]

“Google’s power consumption ... would incur an 
annual electricity bill of nearly $38 million”
                                               [Qureshi:sigcomm09]

Annual cost of energy for Google, Amazon, Microsoft
= 

Annual cost of all first-year CS PhD Students
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Can we reduce energy 
use by a factor of ten?

Still serve the same workloads
 

Avoid increasing capital cost
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FAWN
Fast Array of Wimpy Nodes

Improve computational efficiency of 
data-intensive computing using an array 
of well-balanced low-power systems.

Understanding Data-Intensive Workloads on FAWN

Iulian Moraru, Lawrence Tan, Vijay Vasudevan
15-849 Low Power Project

Abstract

In this paper, we explore the use of the Fast Array
of Wimpy Nodes (FAWN) architecture for a wide
class of data-intensive workloads. While the bene-
fits of FAWN are highest for I/O-bound workloads
where the CPU cycles of traditional machines are
often wasted, we find that CPU-bound workloads
run on FAWN can be up to six times more efficient
in work done per Joule of energy than traditional
machines.

1 Introduction

Power has become a dominating factor in the cost
of provisioning and operation of large datacenters.
This work focuses on one promising approach to
reduce both average and peak power using a Fast
Array of Wimpy Node (FAWN) architecture [2],
which proposes using a large cluster of low-power
nodes instead of a cluster of traditional, high power
nodes. FAWN (Figure 1) was originally designed to
target mostly I/O-bound workloads, where the ad-
ditional processing capabilities of high-speed pro-
cessors were often wasted. While the FAWN ar-
chitecture has been shown to be significantly more
energy efficient than traditional architectures for
seek-bound workloads [16], an open question is
whether this architecture is well-suited for other
data-intensive workloads common in cluster-based
computing.

Recent work has shown that the FAWN archi-
tecture benefits from fundamental trends in com-
puting and power—running at a lower speed saves
energy, while the low-power processors used in
FAWN are significantly more efficient in work done
per joule [16]. Combined with the inherent paral-
lelism afforded by popular computing frameworks
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Figure 1: FAWN architecture

such as Hadoop [1] and Dryad [9], a FAWN sys-
tem’s improvement in both CPU-I/O balance and
instruction efficiency allows for an increase in over-
all energy efficiency for a much larger class of dat-
acenter workloads.

In this work, we present a taxonomy and analysis
of some primitive data-intensive workloads and op-
erations to understand when FAWN can perform as
well as a traditional cluster architecture and reduce
energy consumption for data centers.

To understand where FAWN improves energy
efficiency for data-intensive computing, we in-
vestigate a wide-range of benchmarks common
in frameworks such as Hadoop [1], finding that
FAWN is between three to ten times more efficient
than a traditional machine in performing operations
such as distributed grep and sort. For more CPU-
bound operations, such as encryption and compres-
sion, FAWN architectures are still between three to
six times more energy efficient. We believe these
two categories of workloads—CPU-bound and I/O-
bound—encompass a large enough range of com-
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Goal: reduce peak power
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Overview

• Background

• FAWN Principles

• FAWN-KV Design

• Evaluation

• Conclusion
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Towards balanced systems
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Speed vs. Efficiency

Targeting the sweet-spot in efficiency
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Overview

• Background

• FAWN Principles

• FAWN-KV Design

• Architecture

• Constraints
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Data-intensive Key Value

• Critical infrastructure service

• Service level agreements for performance/latency

• Random-access, read-mostly, hard to cache
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FAWN-KV: 
Our Key Value Proposition

• Energy-efficient cluster key-value store

• Goal: improve Queries/Joule

• Prototype: Alix3c2 nodes with flash storage

• 500MHz CPU, 256MB DRAM, 4GB CompactFlash
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FAWN-KV: 
Our Key Value Proposition

• Energy-efficient cluster key-value store

• Goal: improve Queries/Joule

• Prototype: Alix3c2 nodes with flash storage

• 500MHz CPU, 256MB DRAM, 4GB CompactFlash
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Unique Challenges:
• Efficient and fast failover

• Wimpy CPUs, limited DRAM

• Flash poor at small random writes
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FAWN-KV Architecture
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FAWN-KV Architecture
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From key to value
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Figure 2: (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transfer-

ring out-of-range entries to the new store. (c) After scan is complete, the datastore list is atomically updated to add the new store.

Compaction of the original store will clean up out-of-range entries.

3.2 Understanding Flash Storage

Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.

Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even
under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the
modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write

buffering and preemptive block erasure. These techniques improve
performance for short bursts of writes, but recent studies show that
sustained random writes still perform poorly on these devices [40].

These performance problems motivate log-structured techniques
for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.

3.3 The FAWN Data Store

FAWN-DS is a log-structured key-value store. Each store contains
values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,
and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-
age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in

the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which

avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then

return bucket;
end if

{Check next chain element...}
end for

return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to

find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for

drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i

hash buckets. Each

bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit

key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.
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Lookup proceeds, then, by locating a bucket using the index bits
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3.2 Understanding Flash Storage

Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.

Three characteristics of flash underlie the design of the FAWN-KV
system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
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modified block in its entirety. As a result, updating a single byte
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for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-
ment system, described next.
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and Delete.1
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Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to

find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for

drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order
bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i

hash buckets. Each

bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits
and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching
the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash
record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit

key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.

✔

{12 bytes per entry

Avoid random writes
Limited Resources

FAWN-DS FAWN-KV
Efficient Failover

Avoid random writes

KeyFrag != Key
Potential collisions!

 Low probability of
multiple Flash reads

Hashtable Data region

Monday, October 12, 2009



Log-structured Datastore
• Log-structuring avoids small random writes
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On a node addition
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Node additions, failures require transfer of key-ranges
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Nodes stream data range

21

Data Log 
In-memory
Hash Index 

Log Entry

KeyFrag   Valid Offset

160-bit Key

KeyFrag

Key   Len   Data

Inserted values
are appended

Scan and Split

Concurrent
Inserts

Datastore List Datastore List
Data in new range
Data in original range Atomic Update

of Datastore List

B

A •  Background operations sequential
•  Continue to meet SLA

Stream from B to A

Concurrent Inserts,
Minimizes locking

Compact Datastore

✔

FAWN-KV
Efficient Failover

Avoid random writes
✔

✔
✔

Avoid random writes
Limited Resources

FAWN-DS
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FAWN-KV Take-aways

• Log-structured datastore 

• Avoids random writes at all levels

• Minimizes locking during failover

• Careful resource use but high performing

• Replication and strong consistency 

• Variant of chain replication (see paper)

22
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Overview

• Background

• FAWN principles

• FAWN-KV Design

• Evaluation

• Conclusion
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Evaluation Roadmap

• Key-value lookup efficiency comparison

• Impact of background operations

• TCO analysis for random read workloads

24
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FAWN-DS Lookups

• Our FAWN-based system over 6x more 
efficient than 2008-era traditional systems

25

System QPS Watts QPS
Watt

Alix3c2/Sandisk(CF) 1298 3.75 346

Desktop/Mobi (SSD) 4289 83 51.7

MacbookPro / HD 66 29 2.3

Desktop / HD 171 87 1.96
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Impact of background ops
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Background operations have: 
• Moderate impact at peak load
• Negligible impact at 30% load
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When to use FAWN for 
random access workloads?

27

TCO = Capital Cost + Power Cost ($0.10/kWh)

FAWN (10W each)

2 TB disk

64GB SATA Flash SSD

2GB DRAM per node

Traditional (200W)

Five 2 TB disks

160GB PCI-e Flash SSD

64GB FBDIMM per node

~$250-500 per node~$2000-8000 per node
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Architecture with lowest TCO
for random access workloads

FAWN-based systems can provide 
lower cost per {GB, QueryRate}

Ratio of query rate to 
dataset size determines 
storage technology

Graph ignores 
management, cooling, 
networking...

System Cost W QPS Queries
Joule

GB
Watt

TCO
GB

TCO
QPS

Traditionals:
5-2TB HD $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs:
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003

Table 4: Traditional and FAWN node statistics
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Figure 16: Solution space for lowest 3-year TCO as a function
of dataset size and query rate.

second. The dividing lines represent a boundary across which one
system becomes more favorable than another.

Large Datasets, Low Query Rates: FAWN+Disk has the lowest
total cost per GB. While not shown on our graph, a traditional
system wins for exabyte-sized workloads if it can be configured
with sufficient disks per node (over 50), though packing 50 disks per
machine poses reliability challenges.

Small Datasets, High Query Rates: FAWN+DRAM costs the
fewest dollars per queries/second, keeping in mind that we do not
examine workloads that fit entirely in L2 cache on a traditional node.
This somewhat counterintuitive result is similar to that made by
the intelligent RAM project, which coupled processors and DRAM
to achieve similar benefits [5] by avoiding the memory wall. We
assume the FAWN nodes can only accept 2 GB of DRAM per node,
so for larger datasets, a traditional DRAM system provides a high
query rate and requires fewer nodes to store the same amount of data
(64 GB vs 2 GB per node).

Middle Range: FAWN+SSDs provide the best balance of storage
capacity, query rate, and total cost. As SSD capacity improves, this
combination is likely to continue expanding into the range served
by FAWN+Disk; as SSD performance improves, so will it reach into
DRAM territory. It is therefore conceivable that FAWN+SSD could
become the dominant architecture for a wide range of random-access
workloads.

Are traditional systems obsolete? We emphasize that this analysis
applies only to small, random access workloads. Sequential-read
workloads are similar, but the constants depend strongly on the per-
byte processing required. Traditional cluster architectures retain
a place for CPU-bound workloads, but we do note that architec-
tures such as IBM’s BlueGene successfully apply large numbers of

low-power, efficient processors to many supercomputing applica-
tions [14]—but they augment their wimpy processors with custom
floating point units to do so.

Our definition of “total cost of ownership” also ignores several
notable costs: In comparison to traditional architectures, FAWN
should reduce power and cooling infrastructure, but may increase
network-related hardware and power costs due to the need for more
switches. Our current hardware prototype improves work done per
volume, thus reducing costs associated with datacenter rack or floor
space. Finally, of course, our analysis assumes that cluster software
developers can engineer away the human costs of management—an
optimistic assumption for all architectures. We similarly discard
issues such as ease of programming, though we ourselves selected
an x86-based wimpy platform precisely for ease of development.

6. RELATED WORK
FAWN follows in a long tradition of ensuring that systems are bal-
anced in the presence of scaling challenges and of designing systems
to cope with the performance challenges imposed by hardware ar-
chitectures.

System Architectures: JouleSort [44] is a recent energy-
efficiency benchmark; its authors developed a SATA disk-based
“balanced” system coupled with a low-power (34 W) CPU that sig-
nificantly out-performed prior systems in terms of records sorted per
joule. A major difference with our work is that the sort workload
can be handled with large, bulk I/O reads using radix or merge sort.
FAWN targets even more seek-intensive workloads for which even
the efficient CPUs used for JouleSort are excessive, and for which
disk is inadvisable.

More recently, several projects have begun using low-power
processors for datacenter workloads to reduce energy consump-
tion [6, 34, 11, 50, 20, 30]. The Gordon [6] hardware architecture
argues for pairing an array of flash chips and DRAM with low-power
CPUs for low-power data intensive computing. A primary focus of
their work is on developing a Flash Translation Layer suitable for
pairing a single CPU with several raw flash chips. Simulations on
general system traces indicate that this pairing can provide improved
energy-efficiency. Our work leverages commodity embedded low-
power CPUs and flash storage for cluster key-value applications,
enabling good performance on flash regardless of FTL implemen-
tation. CEMS [20], AmdahlBlades [50], and Microblades [30] also
leverage low-cost, low-power commodity components as a building
block for datacenter systems, similarly arguing that this architecture
can provide the highest work done per dollar and work done per
joule. Microsoft has recently begun exploring the use of a large clus-
ter of low-power systems called Marlowe [34]. This work focuses
on taking advantage of the very low-power sleep states provided
by this chipset (between 2–4 W) to turn off machines and migrate
workloads during idle periods and low utilization, initially target-
ing the Hotmail service. We believe these advantages would also
translate well to FAWN, where a lull in the use of a FAWN cluster
would provide the opportunity to significantly reduce average en-
ergy consumption in addition to the already-reduced peak energy
consumption that FAWN provides. Dell recently designed and has
begun shipping VIA Nano-based servers consuming 20–30 W each
for large webhosting services [11].

Considerable prior work has examined ways to tackle the “mem-
ory wall.” The Intelligent RAM (IRAM) project combined CPUs
and memory into a single unit, with a particular focus on energy effi-
ciency [5]. An IRAM-based CPU could use a quarter of the power

28
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Conclusion
• FAWN architecture reduces energy 

consumption of cluster computing

• FAWN-KV addresses challenges of wimpy nodes 
for key value storage

• Log-structured, memory efficient datastore 

• Efficient replication and failover

• Meets energy efficiency and performance goals

• “Each decimal order of magnitude increase in 
parallelism requires a major redesign and rewrite of 
parallel code” - Kathy Yelick
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