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Abstract—
With the continued growth of computing power and reduction

in physical size of enterprise servers, the need for actively
managing electrical power usage in large datacenters is becoming
ever more pressing. By far the greatest savings in electrical
power can be effected by dynamically consolidating workload
onto the minimum number of servers needed at a given time
and powering off the remainder. However, simple schemes for
achieving this goal fail to cope with the complexities of realistic
usage scenarios. In this paper we present a combined power-and
performance-management system that builds on a state-of-the-
art performance manager to achieve significant power savings
without unacceptable loss of performance. In our system, the
degree to which performance may be traded off against power
is itself adjustable using a small number of easily-understood
parameters, permitting administrators in different facilities to
select the optimal tradeoff for their needs. We characterize
the power saved, the effects of the tradeoff between power
and performance, and the changes in behavior as the tradeoff
parameters are adjusted, both in simulation and in a sample
deployment of the real system.

I. INTRODUCTION

Energy consumption within data centers has become a major
concern for businesses and governments worldwide. As server
power densities continue to increase, the cost of the energy
used to power and cool a server during its lifetime is becoming
a significant fraction of the cost of the hardware itself.

Given the widely-recognized value of reducing power con-
sumption in data centers, a large variety of power-saving
measures have been proposed, some of which are being
implemented and marketed. Chips have been equipped with
low-power states that are manipulable by firmware or software
(e.g. by the operating system or middleware), and low-power
servers that exploit these states are being designed. At the
facilities level, more efficient power supplies and cooling
systems are being developed and marketed. Kephart et al. [1]
and Chase et al. [2] have previously argued that workload
consolidation with powering off spare server machines is the
most effective way to conserve electrical energy. Our study
of power usage curves as a function of CPU usage performed
on IBM blade center hardware confirms this argument. For
example, we found out that on an IBM LS20 dual-core AMD
Opteron blade as much as 80% of server power usage is
incurred in idle state. Only 20% may be controlled by other
techniques while the server is powered on. In a much more
extensive study Fan et al. [3] found a similar result.

In this paper, we describe an application placement con-
troller (APC) that consolidates workload to achieve substantial
power savings. It is an augmentation of an existing commercial
APC that manages systems to specified performance objec-
tives. We address a key challenge: how to place applications so
as to meet combined power and performance objectives. One
straightforward approach to addressing the tradeoff is to give
blanket priority to performance by consolidating workload
onto the minimum number of machines sufficient to serve it,
and turning off the unused machines. However, much greater
energy savings are possible if we allow application perfor-
mance to be somewhat degraded. In the system we describe
here, an application’s performance is measured relative to a
service level agreement (SLA), which permits us in principle
to reduce the amount of computing resources allocated to
the applications—thereby saving power at the expense of
performance—to the point where the SLA goals are just barely
being met. However, this approach is too inflexible. Even if
service contracts specify SLAs of applications, the service
provider should be able to decide whether to always meet
the SLAs based on their value, penalties, and the cost of
running the datacenter (of which electrical power usage is an
important component). Therefore, in this paper we take on the
more involved problem of modeling a tradeoff between power
and performance and designing a controller that optimizes
application placement and server usage so as to achieve an
optimal tradeoff. It bears emphasizing that we are doing this
by extending an existing performance management system [4],
thereby incorporating the state-of-the-art constrained perfor-
mance optimization techniques it employs [5].

The remainder of this paper is organized as follows. Sec-
tion II describes a formal model of the system and gives our
proposed solution the power-performance coordination prob-
lem. Section III presents experimental results and simulation
data characterizing how our solution performs in practice. Next
is a discussion of related work, followed by conclusions and
a summary of future work.

II. SYSTEM AND ALGORITHMS

In this section we first describe our system, and then
describe how we have augmented an placement controller to
simultaneously manage power and performance.
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A. System description

We consider a cluster of server machines servicing requests
to web applications, as shown in Figure 1. Each application
may be replicated for high-availability and performance to
multiple server machines. The set of all replicas of a given
application (here called the instances of the application)
constitutes its application cluster. Application clusters may
arbitrarily overlap on physical machines.

Each application is accessed by a certain number of client
sessions, which varies over time. Session requests arrive at an
L7 proxy router that provides flow-control. The flow controller
places incoming requests in queues and dispatches them from
the queues so as to prevent overload on the backend server
machines. The dispatching is done based on a weighted-fair
round robin scheduling discipline. The dispatching weights are
controlled based on application SLAs, which are defined in
terms of average response time goals. The flow controller mon-
itors and profiles the incoming request flows while estimating
their average service time on each backend server, response
time, number of client sessions, client think times, and CPU
work factor [6]. Based on these data, the flow controller
models application response time as a function of CPU speed
allocation. The model is used to calculate the optimal division
of server CPU capacity among applications, which translates
into optimal dispatching weights for the dispatcher. The flow
controller is limited by the current placement of application
instances, which introduces constraints on the amount of CPU
capacity that may be used by each application. The design of
the controller is described in detail in [7] and [8].

The placement of applications may be controlled by starting
and stopping individual instances of that application. Ap-
plication placement may be changed dynamically based on
workload intensity and application SLAs. In the past, we
have implemented a controller that periodically evaluates the
placement of applications and modifies it to better optimize
the allocation of resources. To achieve this goal it collaborates
with the flow controller: the flow controller provides the place-
ment controller with application performance information. The

placement controller places applications according to the same
optimality criteria as those used by the flow controller.

When placing application instances, the placement con-
troller strives to meet CPU and memory capacity constraints
as well as various other constraints such as allocation restric-
tions, collocation restrictions, affinity constraints, minimum
and maximum number of instances for each application, etc.
The placement controller that achieves these objectives has
been introduced in [5].

Even though they jointly solve the same optimization prob-
lem, the flow and placement controllers are separate entities
working on different time scales. The flow controller readjusts
queue dispatching weights every 15-30 seconds, which ensures
rapid response to workload intensity changes. Placement is
readjusted every several to tens of minutes, as placement
changes are typically heavy-weight and time consuming.

In this paper, we extend the placement controller with the
ability to consolidate application instances on a subset of
available server machines so as to permit turning off the
remaining machines.

B. Formal system model

To model the system, we start with a set of server machines
(referred to as nodes) N = {n1, . . . , nN}. At any time, a node
ni is either powered on or off. We denote the set of nodes that
are powered on by N on. Each node n has CPU capacity Ωn

and memory capacity Γn.
We also have a set of applications M = {m1, . . . ,mM}.

The placement matrix P describes the way instances are
distributed across nodes: Pmn = i means that application m
has i instances running on node n. For this paper, we only
consider the case i ∈ {0, 1}. Obviously, when Pmn = 0 for
all m, then node n may be turned off to save power, i.e. it
may be excluded from N on.

With a given placement P , each application instance is
allocated a portion of the memory and CPU resources of
the node on which it is running. As was noted above, the
placement must obey a variety of constraints and policies
that are unrelated to performance goals. Fortunately, these
complications have no effect on the power-vs.-performance
tradeoff with which we are concerned. In the remainder of
this paper, we will therefore focus almost exclusively on the
CPU allocation. The amount of CPU resource allocated to
the instance of application m running on node n is denoted
by ωmn. We will denote by L the CPU allocation matrix
giving ωmn for all m and n. Clearly we have 0 ≤ ωmn ≤
Ωn and Pmn = 0 implies ωmn = 0. It is also useful to
form partial sums over applications (ωnode

n =
∑

m ωmn) and
over nodes (ωapp

m =
∑

n ωmn). In order to place application
instances, both P and L must be computed, but from the
perspective of the placement controller they are tightly linked.
Henceforth, we will use L to describe application placement,
as the CPU allocation has the more direct influence on power
consumption.

Based on our observations of several models of Intel- and
AMD-based servers, we model the electrical power usage Π



of a running node as a linear function:

Πn(ωn) = p0,n + p1,nωnode
n (1)

where p0,n, the idle-power term, is electrical power used by
node n if it is powered on but idle. We can express the total
electrical power usage as a function of CPU allocation as
follows:

Π(L) =
∑

n∈N on

[
p0,n + p1,nωnode

n

]
(2)

As was noted above, in practice the idle-power terms dominate
the CPU-dependent terms by a factor of 3− 5 or more, even
when a node is running at capacity (so ωn = Ωn).

We define application performance vector in terms of re-
sponse time as follows: dm = τm−RTm

τm
, where τm represents

the response time goal defined in the SLA for application m,
and RTm is the measured response time. Thus the performance
for an application is 0 when the SLA is just being met, and 1
when the response time is perfect, i.e. equal to 0. (In this paper,
the performance is based upon response time, but in general
it can be any performance metric, such as throughput.)

To express the tradeoff between application performance
and electrical power usage, we introduce a system utility
function U(d, Π) that depends on both the performance vector
d (in which component dm represents the performance of
application m) and the total power consumption Π. Following
refs. [2], [1], we assume that the utility can be separated into a
performance value portion V (d) and an electrical power cost
portion C(Π); the net utility is simply U = V −C. Since both
the performance and the power consumption are determined
by the CPU allocation matrix, V , C and U are correspondingly
functions of L.

In general, one can envision many different plausible func-
tional forms for V (d) and C(Π); this is a matter for the busi-
ness person or system administrator to decide. For purposes of
this paper, we choose specific forms that experience suggests
are practical. First, we assume that the electrical power cost
is linear in the power consumption, and for simplicity set
C(Π) = Π; any constant of proportionality can be absorbed
into the value function. Second, we take the value function
V to depend on d. The total value function is defined as
a sum over application-specific value functions: V (d) =∑

m vm(dm). Specific forms for the functions vm(dm) will
be discussed in the next subsection.

It might seem that we can simply compute the CPU allo-
cation L that optimizes U(L) = V (d(L)) − Π(L). However,
there are some complications that require us to take a more
subtle approach that constrains our search to a subset of
the full universe of possible L. Previous authors [7] have
found that making allocations according to a utility function
that sums over individual application value functions unduly
favors the applications that are deemed more “important”,
often starving applications with lower value to the point where
their SLAs are violated dramatically. The resulting system
behavior can be hard to predict and analyze. Moreover, system
administrators tend to expect “fair” resource allocation, in

which all applications are doing approximately equally well
in meeting their SLA goals, i.e. the performance values dm

are roughly the same. Fairness is achieved in the existing
placement controller by choosing an allocation L∗ according
to a max-min optimization over L:

L∗ = arg max
L

min
m

dm(L) (3)

In order to combine the fairness achieved by Eq. (3) with
the power-performance tradeoff that would be achieved by
optimizing over U(L), we separate the problem into two
parts solved by two conceptually different entities operating
on different timescales: a power controller that determines
which nodes are to be turned on, and a placement controller
that determines how the applications are to be placed on
those nodes. The second of these is essentially the existing
placement controller, which uses Eq. 3 to determine L∗ given
a fixed set of nodes. As will be described more fully at
the end of section II, the power controller considers various
possible settings of N on, querying the placement controller
to determine what would be the resulting L∗(N on). The
power controller then computes the net utility U(L∗(N on)) =
V (d(L∗(N on))) − Π(L∗(N on)), and selects N on∗ to max-
imize U(L∗(N on∗)). The resulting solution will in general
yield a somewhat lower U than would have been attainable
with no constraints on L, but as will be seen in Section III-A
it yields a good power-performance tradeoff that also satisfies
the fairness criterion.

C. Definition of performance value function

Now we describe in further detail the application value
functions vm(dm) that compose the total value function V (d).
We seek functions that promote the behavior that system
administrators would desire and expect, and possess tunable
parameters that provide flexible controls over their shape that
reflect a range of power-performance tradeoffs in an under-
standable manner. Moreover, we seek functions that permit
us to select the desired level of application performance and
to control the rate with which the function value changes
as the distance between an achieved performance level and
the desired performance level increases. This rate of change
determines the relative importance of application performance
and electrical power savings.

Based on these considerations, we choose for this paper the
following function:

vm(dm) = vm,1 + vm,0(1− (1 + dm,0 − dm)k) (4)

The parameters of vm(dm) can be interpreted as follows.
The value of dm,0 configures the desired level of application
performance. For example, we use dm,0 = 0 when it is
sufficient to only meet SLA goals. We use dm,0 = 1 when
we want the system to offer the best possible performance
and only consolidate unused cycles; intermediate values allow
continuous tuning between these extremes. We can also use
it to implement a safety zone to prevent SLA violations as a
result of the unavoidable inaccuracies of profiling and mod-
eling techniques used by our system. Parameter k (‘rigidity’),



which is greater than or equal to 1, controls the importance
of achieving dm,0 relative to saving power. A low value of
k permits the system to reduce physical machines usage in
violation of dm,0. A high value of k forbids such a tradeoff,
as it makes value function essentially a step function. The
value of vm,1 simply controls the vertical offset of the value
function and is given here for cosmetic reasons. Since we
are only concerned with finding the allocation that achieves
the optimal tradeoff, and not with the absolute value of that
tradeoff, vm,1 may be set to 0 with no loss of generality.

Parameter vm,0 controls the absolute value of the value
function, which must be dependent on workload intensity.
Parameter vm,0 also controls the first derivative of vm. To
select the right vm,0 we consider the relationship between
value and power functions. The electrical power usage is a
piece-wise linear function with discontinuities that occur when
to increase CPU allocation a new server must be turned on.
The height of the discontinuity corresponds to the power cost
of the added server in idle state, p0,n. In continuous regions,
the power function increases linearly with rate p1,n. The
system utility, which is the distance between value and power
curves is maximized at a point ω0 where the first derivative
of the value function is equal to p1,n, or at any value of CPU
allocation where discontinuity occurs and which is less than
ω0. When dm(ω0) < dm,0, the system will never achieve dm,0,
which is the performance level desired by a user. Hence, we
must choose vm,0 that allows dm(ω0) >= dm,0. It is easy
to show that to achieve this objective, we must use vm,0 with
minimum value defined as follows (where ω′m is the derivative
of ωm with respect to d taken at dm,0):

vm,0 =
1
k

ω′m(dm,0) max
n

p1,n (5)

D. Power management algorithm

In this subsection we describe the power algorithm in further
detail. Recall that it determines the subset of servers that
must be powered on in order to maximize system utility, and
interacts with a placement controller that has been described
previously [5], [9].

The optimal solution to the power-performance tradeoff
problem requires us to evaluate all subsets of nodes by
calculating the optimal application placement that uses a given
subset of nodes and evaluating the utility of the resultant
placement. It is therefore necessary to rely on heuristics. In this
paper, we use the following simple approach. We search the
space of machine subsets starting from the subset of machines
that are currently turned on. We perform the search in two
directions: by adding and by removing machines from the set.
We only evaluate one choice of a machine to be added or
removed. Then, we proceed to add or remove more machines.
We stop when the change does not increase the utility.

Since we evaluate only one machine as a candidate to add
or remove, we must be careful in selecting it. Considerations
that we take into account include the following.

• Application affinity to servers—it may be impossible to
remove some application instances from a server due

to potential loss of state or the cost of migration to a
different server. We cannot remove a server that hosts an
application that cannot be replaced.

• Application allocation restrictions—an application may
be only runnable on a subset of server machines that
match its requirements. When adding a node, we must
select one that can run the lowest-performing application.
When removing the node, we avoid selecting one that
runs the lowest-performing application.

• Machine power efficiency—we prefer to add machines
that are more power efficient, where power efficiency is
defined as a ratio of machine power usage at maximum
CPU utilization to its maximum CPU speed.

Considering that evaluating a subset involves solving the
placement problem, which is known to be complex [5], [9],
it is reasonable to constrain the search space to subsets
whose cardinality differs from the cardinality of the currently
running subset by not more than a configured number of
machines. Besides reducing the complexity, this conservative
approach helps prevent oscillations. The overall complexity of
the power management algorithm is therefore equivalent to the
complexity of the placement algorithm, and for the algorithm
used in this paper [9] it is O(NM2).

III. SYSTEM EVALUATION

In this section we evaluate the power management solution
proposed in this paper through real system experiments and
through simulation.

A. Experimental results

We have integrated our power management technique with
IBM WebSphere Extended Deployment [4] management mid-
dleware by extending its Application Placement Controller
component (APC) with the functionality of the power con-
troller. Besides APC, IBM WebSphere Extended Deployment
includes other workload management components: Applica-
tion Request Flow Manager, Dynamic Workload Manager, and
Work Profiler, which are responsible for overload protection,
load balancing, and online request profiling, respectively. The
accuracy and stability of each of these controllers affects the
overall system performance making it difficult to evaluate any
single controller in isolation. To reduce the impact of other
controllers on the efficacy of power management technique, we
isolate them as follows. We profile application requests offline
to obtain CPU work factor and client think time for each
application and configure the system to use thus computed
values instead of online estimates. This change makes our
system more responsive to workload intensity changes without
the loss of stability than we would normally see in practice. As
a result, in a relatively short time interval, we can evaluate the
system behavior at a large range of workload intensities while
permitting dramatic workload intensity variations. We continue
to use the full functionality of the Application Request Flow
Manager and Dynamic Workload Manager.

We evaluate the system in a cluster of 13 server ma-
chines. One machine serves as a management node where
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Fig. 2. Number of client sessions for applications A, B, and C as a function
of time.

the management components reside. Another machine is used
by the L7 Proxy node with overload protection functionality.
The remaining 11 machines are used as compute nodes. The
compute nodes are single-CPU 3.2GHz Intel Xeon servers
with hyperthreading disabled and 4GB of memory.

We load the system using three synthetic applications (A,
B, and C) which serve servlet requests that alternate between
CPU intensive computation and sleeping. The sleep time emu-
lates application access to a backend database. By controlling
the amount of computation and the frequency and duration of
sleep times, we can emulate applications with various degrees
of computational intensity. The profiled values of the CPU
work factor and service times on the server machines are 37.3
mega cycles and 220ms, respectively, for all three applications.
We configure response time goals for applications A, B, and
C to be 360ms, 600ms, and 840ms, respectively. Throughout
all experiments we vary load by changing the number of
concurrent client sessions according to pattern illustrated in
Figure 2.

We perform four runs in total. The first run (the ‘no-power-
control’ run) has power optimization disabled, and performs
only performance management—all nodes are always on, and
placement decisions do not take power into account. The other
three runs have power optimization enabled, and are run at
various settings of performance goal d0 and rigidity k. We
first set d0 = 0 and k = 300. With this choice of parameters
we expect the system to always satisfy SLA goals but to make
no effort to exceed them. In the second run, we use d0 = 1
and k = 300, which instructs the system to always maximize
performance. Any power savings with this choice of d0 and k
result from consolidating unused cycles. Finally, we set d0 = 1
and k = 20, which makes the system attempt to maximize the
performance, but under high workload intensity permits it to
depart from the best performance by about 10% if this results
in turning off a machine.

In Figure 3 we show a time series of the response times

for applications A, B and C over time in the four runs with
response times averaged over 1 minute intervals. The dotted
horizontal lines in Figure 3 show the response time goals for
the three applications, as discussed above. We expect that for
d0 = 0 and k = 300, the average response times should be at,
or slightly below, 360ms, 600ms, and 840ms for applications
A, B, and C. In the experiment, we observe some departures
from this expectation. First, throughout the run, we observe
occasional high spikes, which correspond to the increases in
workload intensity and last as long as it takes for the system
to react to the change (usually about 1-2 minutes). Second,
throughout the run, and particularly between 140 and 240
minutes after the beginning of the experiment, the response
time for applications is slightly above the configured goal. This
happens as a result of a coarse granularity of allocation used
by the flow controller, which is unable to effectively utilize
CPU capacity that is smaller than what is needed by a full
request. In our scenario, an average request requires 37.3 mega
cycles and is served by a server within 220 ms. Thus, its CPU
demand is about 170MHz, which is roughly 5% of the overall
node CPU capacity. Thus, in the worst case, the flow controller
may be underutilizing the system by as much as 5%, which
results in unnecessary queuing at the L7 proxy and deteriorates
the response time. This is clearly a flaw of our management
system, which may be addressed in several ways, for example
by (1) improving the granularity of management in the flow
controller or (2) modifying the placement controller to detect
the ratio of CPU capacity that the flow controller is able to
utilize and overprovision the system accordingly.

In the second run, for d0 = 1 and k = 300, we expect the
system to always maximize performance. This means that the
response time for all applications should stay at about 220ms
(the service time) throughout the entire run. While we observe
similar discrepancies as in the first run, overall the response
time stays very close to the desired 220ms.

Finally, for d0 = 1 and k = 20, we expect the system
to achieve a response time of 220ms, while occasionally
departing from this level of performance under high workload
intensity. The evidence of such departures may be observed
in Figure 3 at time intervals 45-55, 160-175, and 220-235
minutes after the beginning of the experiment.

Figure 4 shows a time series of the number of nodes turned
on in the three runs in which power management was enabled
(in the no-power-control run, all nodes are always on). It may
be easily observed that for d0 = 0 and k = 300 we are using
up to 3 fewer nodes than for d0 = 1 and k = 300 and d0 = 1
and k = 20. The differences between d0 = 1 and k = 300 and
d0 = 1 and k = 20 show up in points marked by arrows (a),
(b), and (c). Arrow (a) shows a case in which with k = 20 we
are able to serve 48 client sessions for each application using
4 servers, while for k = 300, 5 servers must be started. We
see similar 1 server differences at points (b) and (c). Overall,
as workload increases, higher rigidity makes the system turn
on a node sooner and turn it off later than a lower rigidity.

Figure 5 shows application placement on nodes as a function
of time observed in the run with d0 = 0 and k = 300 (for
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clarity, only the nodes used in this run are shown). The figure
permits us to make an interesting observation that our system,
in response to a workload change for a particular application
frequently responds by increasing the number of instances of
other applications. Such a situation occurs, for example, in
minute 35, when load for application C is increased and system
responds by starting new instances of applications A and B on
node 4. This seemingly odd behavior demonstrates a strength
of our system, which is its ability to model and calculate how
CPU power may be shifted among applications on a server
machine. Another interesting scenario occurs in minute 115
where in response to decreased workload of A, we eliminate
node 2 from the set of running servers. To accomplish this task,
the system moves application C, which is collocated with A
on node 2, to node 3.

Figure 6 shows the overall power savings (as a percentage)
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Fig. 5. Application placement as a function of time for d0 = 0 and k = 300.

as a function of time in each run of the experiment. The power
saving at a given time is defined as difference between the
amount of power used at that time in the current run, and that
used at that time in the no-power-control run—the higher the
number, the more power is being saved. In this experiment,
we defined the power consumption of the machines as being
80W when idle, and 100W when at 100% CPU consumption
(that is to say, p0 = 80 and Πmax = 100 for all nodes).
Between those two points, the power consumption increases
linearly with CPU percentage. These numbers were measured
on IBM LS20 blades—whilst this experiment is not conducted
on those blades, the power consumption curve used is known
to be realistic, as it comes from real machines.

In the no-power-control run, all 11 machines were on
throughout, so the minimum possible power consumption
(when all nodes are idle) in that run is 880W. In all runs, the
maximum possible power consumption (when all nodes are
on and running at 100% CPU utilisation) is 1100W. Figure 6
shows that the greatest power saving is obtained when d0 = 0
and k = 300—this is expected, as it is in that run that the
system is permitted to sacrifice the most performance for
power. Figure 3 shows the performance side of this tradeoff,
and was described above.

B. Simulations

To further characterize the way in which the tuneable
parameters of v affect system behavior, we performed a series
of simulations in which we calculated power savings and
performance degradation across a wide range of k and d0.

The simulation ran the same implementation of the place-
ment algorithm that was used in the real experiments in a
simulated environment of 20 nodes and 20 applications, each
with its own time-varying workload, with a simulated flow
controller and APC that carried out the placement algorithm’s
decisions exactly. We searched the space of k and d0 by choos-
ing d0 ∈ {0, 0.1, 0.2, . . . , 1} and log2(k) ∈ {0, 0.5, 1, . . . , 9}.
For each pair (d0, k), two runs were made: one in which



0

10

20

30

40

50

60

70

80

90

100

 0  60  120  180  240

P
ow

er
 s

av
in

gs
 (

%
)

Time (min)

d0=0, k=300
d0=1, k=20

d0=1, k=300

Fig. 6. Power savings, over the no-power-control run, as a function of time
for various settings of d0 and k.

power-savings was taken into account, and one in which it
was not. Each run consisted of a sequence of placements
calculated for a sequence of 32 different workloads that
varied in a statistically reasonable, but reproducible, way. For
each such placement, simulated power usage and application
performance levels were measured. The power usage was
averaged over the sequence of placements, and the utility
values were averaged over the placements and the applications
to get two aggregate quantities per run: the average power
usage level, and the average application performance level. By
taking the difference in these aggregates for pairs of runs in
which one run used the power-aware placement and the other
did not, we were able to measure the average power savings
and performance degradation for the given k and d0.

Figure 7 shows the simulation results. The top part shows
the power savings for different values of d0 as a function
of log2(k). The bottom part shows the corresponding change
in performance. As the curves show, for any selected value
of d0, the change in overall behavior as a function of k is
smoothly varying and monotonic; similarly, adjustments to d0

cause a smooth, monotonic change in behavior. Thus k and d0

are useful control parameters: administrators can adjust them
to find desired tradeoff points, and the system’s response to
changes is both smooth and predictable.

IV. RELATED WORK

The three principal approaches to power management are
dynamic voltage Scaling (DVS), dynamic frequency scaling
(DFS), and server consolidation.

DVS permits a quadratic reduction of power usage by
lowering processor voltage at times of low CPU utilization.
Bohrer et al. [10] have shown that this technique can reduce
the CPU energy consumption by as much as 30%. Elnozahy
et al. [11] have proposed a scheme that allows Web requests
to be held in a queue for a short period of time at times of low
workload intensity, and dispatched from the queue as a batch.
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Fig. 7. Power savings and performance degradation as functions of log2(k),
for selected d0.

This permits a CPU to remain at low power usage for longer
periods of time and thus offer further energy savings. Pillai et
al. [12] studied DVS algorithms that offer real-time deadline
guarantees. These approaches focus on a single server system.
Wang et al. [13] propose a control-theoretic technique to adjust
server voltage rates in a cluster of server machines, while
permitting request buffering at the entrance to the system.

DFS reduces clock frequency, permitting the CPU to con-
sume less power. Kephart et al. [1] use it in a scheme that
trades off Web application performance and power usage based
on a prescribed utility function that expresses monetary value
of achieving a certain quality of service and the cost of power
needed to provide CPU capacity necessary to achieve this
level of QoS. The proposed feed back controller modifies CPU
frequency setting and achieves 10% reduction of power con-
sumption for a small degradation of application performance.

Server consolidation has become a particularly atractive
option with the advent of virtualization technologies that
permit live migration of arbitrary workloads. Chase et al. [2]
propose an economic model that finds an optimal allocation
of servers to application clusters. The model associates the
cost of power usage with each server thus representing the



tradeoff between power and performance. Our approach differs
from theirs in several ways. First, we allow finer-grained
resource allocation to application clusters as, in our technique,
application clusters overlap on a set of physical machines. This
makes it necessary to not only decide the number of servers
that are powered on, but also the placement on applications
on servers that are on. Second, while they consider only CPU
resources, our problem is also constrained by memory capacity
and a variety of operational constraints. Finally, they assume
the cluster of servers to be homogeneous, while our approach
permits heterogeneous server clusters.

Elnozahy et al. [14] study several policies of energy conser-
vation including server consolidation and a hybrid approach
involving server consolidation and DVS. The decision whether
to power a server on or off is made based on the operating
frequency of currently running servers. The approach evaluates
an impact of these decisions on application performance. As
in [2] a homogeneous server cluster is assumed.

Chen et al. [15] discuss a cluster of Web application
servers in which power usage is minimized by both DVS
and consolidation, subject to the constraint that application
response times meet SLA goals. This approach can ensure
SLA satisfaction, but does not permit a dynamical tradoff
between power savings and performance level.

Bobroff et al. [16] introduce an algorithm to consolidate
workloads running inside virtual machines. They minimize the
set of running machines in a heterogeneous server cluster.
An application is equated with a virtual machine, whereas
we deal with applications that may, and usually need, to
be spread across multiple physical or virtual machines. Ap-
plication demands are given in the form of direct resource
requirements and no explicit model of application performance
is present. Likewise, there is no explicit notion of power cost
that would help differentiate among machines with different
energy consumption curves.

Tsai et al. [17] propose a capacity planning technique that
estimates the CPU requirement for a Web application based
on network and OS measurements. This technique is applied
to change the number of running servers based on workload
intensity in a cluster of homogeneous machines. The approach
focuses on a single application and thus does not have to
address the problem of packing applications on running servers
while maintaining their various operational constraints.

V. CONCLUSIONS

In this paper we have shown how power-savings may
be incorporated into advanced, SLA-based performance-
management systems by means of an approximate optimiza-
tion over a synthetic utility function. The combined power-
and performance-management algorithm preserves fairness of
allocation while simultaneously reducing power usage in a safe
and flexible way. It also presents administrators with a small
number of control parameters that can be used to achieve a
“correct” tradeoff between maintaining performance levels and
saving power. We have shown by experiment and simulation
that our approach is likely to work in real-world deployments

and that the control parameters are an effective way of shaping
system behavior.

Future work includes further testing of the system, espe-
cially in complex situations involving policy-based constraints
and memory allocation problems; integration with external
components to handle the actual turning on and off of com-
puters; consideration of policies for machine lifecycle issues;
improving the scalability of the algorithms; and combining
this work with support for other workload types.
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