
1

CS377: Operating SystemsComputer Science Lecture 18, page 1Computer Science

Last Class: Demand Paged Virtual
Memory

Benefits of demand paging:
• Virtual address space can be larger than physical address space.
• Processes can run without being fully loaded into memory.

– Processes start faster because they only need to load a few pages (for code
and data) to start running.

– Processes can share memory more effectively, reducing the costs when a
context switch occurs.

• A good page replacement algorithm can reduce the number of
page faults and improve performance

CS377: Operating SystemsComputer Science Lecture 18, page 2Computer Science

Today
• LRU approximations:

– Second Chance
– Enhanced Second Chance

• Hardware support for page replacement algorithms

• Replacement policies for multiprogramming

2

CS377: Operating SystemsComputer Science Lecture 18, page 3Computer Science

Adding Memory
Does adding memory always reduce the number of page faults?
FIFO:

•With FIFO, the contents of memory can be completely different with a different
number of page frames.

frame 4
frame 3
frame 2
frame 1
frame 3
frame 2
frame 1

EDCBAEBADCBA

CS377: Operating SystemsComputer Science Lecture 18, page 4Computer Science

Adding Memory with LRU
LRU:

•With LRU, increasing the number of frames always decreases the number of page
faults. Why?

frame 4
frame 3
frame 2
frame 1
frame 3
frame 2
frame 1

EDCBAEBADCBA

3

CS377: Operating SystemsComputer Science Lecture 18, page 5Computer Science

Implementing LRU:
• All implementations and approximations of LRU require

hardware assistance
• Perfect LRU:

1. Keep a time stamp for each page with the time of the last access. Throw
out the LRU page.
• Problems: OS must record time stamp for each memory access, and

to throw out a page the OS has to look at all pages. Expensive!
2. Keep a list of pages, where the front of the list is the most recently used

page, and the end is the least recently used.
• On a page access, move the page to the front of the list. Doubly link

the list.
• Problems: still too expensive, since the OS must modify 6 pointers

on each memory access (in the worst case)

CS377: Operating SystemsComputer Science Lecture 18, page 6Computer Science

Approximations of LRU
• Hardware Requirements: Maintain reference bits with each

page.
– On each access to the page, the hardware sets the reference bit to '1'.
– Set to 0 at varying times depending on the page replacement algorithm.

• Additional-Reference-Bits: Maintain more than 1 bit, say 8 bits.
– At regular intervals or on each memory access, shift the byte right, placing

a 0 in the high order bit.
– On a page fault, the lowest numbered page is kicked out.

=> Approximate, since it does not guarantee a total order on the
pages.

=> Faster, since setting a single bit on each memory access.
• Page fault still requires a search through all the pages.

4

CS377: Operating SystemsComputer Science Lecture 18, page 7Computer Science

Second Chance Algorithm: (a.k.a.
Clock)

Use a single reference bit per page.

1. OS keeps frames in a circular list.
2. On a page fault, the OS

a) Checks the reference bit of the next frame.
b) If the reference bit is ‘0’, replace the page, and set its bit to ‘1’.
c) If the reference bit is ‘1’, set bit to ‘0’, and advance the pointer to the next

frame

CS377: Operating SystemsComputer Science Lecture 18, page 8Computer Science

Second Chance Algorithm
• Less accurate than additional-reference-bits, since the reference

bit only indicates if the page was used at all since the last time it
was checked by the algorithm.

• Fast, since setting a single bit on each memory access, and no
need for a shift.

• Page fault is faster, since we only search the pages until we find
one with a ‘0’ reference bit.

• Simple hardware requirements.
Will it always find a page?
What if all bits are ‘1’?

5

CS377: Operating SystemsComputer Science Lecture 18, page 9Computer Science

Clock Example

=> One way to view the clock algorithm is as a crude
partitioning into two categories: young and old pages.

• Why not partition pages into more than two categories?

CS377: Operating SystemsComputer Science Lecture 18, page 10Computer Science

Enhanced Second Chance
• It is cheaper to replace a page that has not been written

– OS need not be write the page back to disk

=> OS can give preference to paging out un-modified pages

• Hardware keeps a modify bit (in addition to the reference bit)
‘1’: page is modified (different from the copy on disk)
‘0’: page is the same as the copy on disk

6

CS377: Operating SystemsComputer Science Lecture 18, page 11Computer Science

Enhanced Second Chance
• The reference bit and modify bit form a pair (r,m) where

1. (0,0) neither recently used nor modified - replace this page!
2. (0,1) not recently used but modified - not as good to replace, since the OS

must write out this page, but it might not be needed anymore.
3. (1,0) recently used and unmodified - probably will be used again soon, but

OS need not write it out before replacing it
4. (1,1) recently used and modified - probably will be used again soon and

the OS must write it out before replacing it

• On a page fault, the OS searches for the first page in the lowest
nonempty class.

CS377: Operating SystemsComputer Science Lecture 18, page 12Computer Science

Page Replacement in Enhanced
Second Chance

• The OS goes around at most three times searching for the (0,0)
class.

1. Page with (0,0) => replace the page.
2. Page with (0,1) => initiate an I/O to write out the page, locks the page in

memory until the I/O completes, clears the modified bit, and continue the
search

3. For pages with the reference bit set, the reference bit is cleared.
4. If the hand goes completely around once, there was no (0,0) page.

• On the second pass, a page that was originally (0,1) or (1,0) might
have been changed to (0,0) => replace this page

• If the page is being written out, waits for the I/O to complete and then
remove the page.

• A (0,1) page is treated as on the first pass.
• By the third pass, all the pages will be at (0,0).

7

CS377: Operating SystemsComputer Science Lecture 18, page 13Computer Science

Clock Example

CS377: Operating SystemsComputer Science Lecture 18, page 14Computer Science

Replacement Policies for
Multiprogramming

• Thrashing: the memory is over-committed and pages are
continuously tossed out while they are still in use
– memory access times approach disk access times since many memory

references cause page faults
– Results in a serious and very noticeable loss of performance.

• What can we do in a multiprogrammed environment to limit
thrashing?

• Proportional allocation: allocate more page frames to large
processes.

• Global replacement: put all pages from all processes in one pool
so that the physical memory associated with a process can grow
– Advantages: Flexible, adjusts to divergent process needs
– Disadvantages: Thrashing might become even more likely (Why?)

8

CS377: Operating SystemsComputer Science Lecture 18, page 15Computer Science

Replacement Policies for
Multiprogramming

• Per-process replacement: Each process has its own pool of
pages.

• Run only groups of processes that fit in memory, and kick out the
rest.

• How do we figure out how many pages a process needs, i.e., its
working set size?
– Informally, the working set is the set of pages the process is using right now
– More formally, it is the set of all pages that a process referenced in the past T

seconds

• How does the OS pick T?
– 1 page fault = 10msec
– 10msec = 2 million instructions

=> T needs to be a whole lot bigger than 2 million instructions.
– What happens if T is too small? too big?

CS377: Operating SystemsComputer Science Lecture 18, page 16Computer Science

Per-process Replacement
• Working sets are expensive to compute => track page fault

frequency of each process instead
– If the page fault frequency > some threshold, give it more page frames.
– If the page fault frequency < a second threshold, take away some page

frames

• Goal: the system-wide mean time between page faults should be
equal to the time it takes to handle a page fault.
– May need to suspend a process until overall memory demands decrease.

• Advantages: Thrashing is less likely as process only competes
with itself. More consistent performance independent of system
load.

• Disadvantages: The OS has to figure out how many pages to give
each process and if the working set size grows dynamically adjust
its allocation.

9

CS377: Operating SystemsComputer Science Lecture 18, page 17Computer Science

Page Sizes
• Reasons for small pages:

– More effective memory use.
– Higher degree of multiprogramming possible.

• Reasons for large pages:
– Smaller page tables
– Amortizes disk overheads over a larger page
– Fewer page faults (for processes that exhibit locality of references)

• Page sizes are growing because:
– Physical memory is cheap. As a result, page tables could get huge with

small pages. Also, internal fragmentation is less of a concern with
abundant memory.

– CPU speed is increasing faster than disk speed. As a result, page faults
result in a larger slow down than they used to. Reducing the number of
page faults is critical to performance.

CS377: Operating SystemsComputer Science Lecture 18, page 18Computer Science

Summary of Page Replacement
Algorithms

• Unix and Linux use variants of Clock, Windows NT uses FIFO.
• Experiments show that all algorithms do poorly if processes have

insufficient physical memory (less than half of their virtual
address space).

• All algorithms approach optimal as the physical memory allocated
to a process approaches the virtual memory size.

• The more processes running concurrently, the less physical
memory each process can have.

• A critical issue the OS must decide is how many processes and
the frames per process that may share memory simultaneously.

