
CMPSCI 377 Operating Systems Fall 2008

Lecture 11: October 7
Lecturer: Prashant Shenoy Scribe: Shashi Singh

11.1 Readers/Writers Problem

In computer science, the readers-writers problems are examples of a common computing problem in concur-
rency. The two problems deal with situations in which many threads must access the same shared memory
at one time, some reading and some writing, with the natural constraint that no process may access the
share for reading or writing while another process is in the act of writing to it. (In particular, it is allowed
for two readers to access the share at the same time.)

11.1.1 Three types of solutions

1. Reader preferred: waiting readers go before waiting writers. A constraint is added that no reader shall
be kept waiting if the share is currently opened for reading.

2. Writer preferred: waiting writers go before waiting readers. A constraint is added that no writer, once
added to the queue, shall be kept waiting longer than absolutely necessary.

3. Neither preferred: try to treat readers and writers fairly (a simple queue is not good enough; we want
parallel readers whenever possible). In fact, the solutions implied by both problem statements - reader
preferred and writer preferred - result in starvation; the reader preferred problem may starve writers in
the queue, and the writer preferred problem may starve readers. Therefore, neither preferred problem
is sometimes proposed, which adds the constraint that no thread shall be allowed to starve; that is, the
operation of obtaining a lock on the shared data will always terminate in a bounded amount of time.
Solutions to this will necessarily sometimes require readers to wait even though the share is opened for
reading, and sometimes require writers to wait longer than absolutely necessary.

Look at the lecture slides for pseudocodes for these three different solutions

11.1.2 pthreads Read/Write Locks

pthread library supports read/write lock. So you don’t have to care for the synchronization among the
readers and the writers. A thread can acquire a read lock or a write lock. Multiple threads can hold the
same read lock concurrently, but only one thread can hold a write lock. Following are the pthread routines:

pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_wrlock()
pthread_rwlock_unlock()

11-1



11-2 Lecture 11: October 7

11.2 Dining Philosophers Problem

The dining philosophers problem is an illustrative example of a common computing problem in concurrency.
It is a classic multi-process synchronization problem. The dining philosophers problem is summarized a
bunch of philosophers sitting at a table doing one of two things - eating or thinking. While eating, they
are not thinking, and while thinking, they are not eating. The philosophers sit at a circular table with a
large bowl of spaghetti in the center. A chopstick is placed in between each philosopher, and as such, each
philosopher has one chopstick to his or her left and one chopstick to his or her right. As spaghetti is difficult
to serve and eat with a single chopstick, it is assumed that a philosopher must eat with two chopsticks. The
philosopher can only use the chopstick on his or her immediate left or right.

The philosophers never speak to each other, which creates a dangerous possibility of deadlock when every
philosopher holds a left chopstick and waits perpetually for a right chopstick (or vice versa). Originally used
as a means of illustrating the problem of deadlock, this system reaches deadlock when there is a ’cycle of
unwarranted requests’. In this case philosopher P1 waits for the chopstick grabbed by philosopher P2 who
is waiting for the chopstick of philosopher P3 and so forth, making a circular chain.

Starvation might also occur independently of deadlock if a philosopher is unable to acquire both chopsticks
due to a timing issue. For example there might be a rule that the philosophers put down a chopstick after
waiting five minutes for the other chopstick to become available and wait a further five minutes before making
their next attempt. This scheme eliminates the possibility of deadlock (the system can always advance to
a different state) but still suffers from the problem of livelock (A livelock is similar to a deadlock, except
that the states of the processes involved in the livelock constantly change with regard to one another, none
progressing). If all the philosophers appear in the dining room at exactly the same time and each picks up
their left chopstick at the same time the philosophers will wait five minutes until they all put their chopsticks
down and then wait a further five minutes before they all pick them up again.

The lack of available chopsticks is an analogy to the locking of shared resources in real computer programming,
a situation known as concurrency. Locking a resource is a common technique to ensure the resource is accessed
by only one program or chunk of code at a time. When the resource a program is interested in is already
locked by another one, the program waits until it is unlocked. When several programs are involved in locking
resources, deadlock might happen, depending on the circumstances. For example, one program needs two
files to process. When two such programs lock one file each, both programs wait for the other one to unlock
the other file, which will never happen.

11.2.1 Solution to the Dining Philosophers problem

A naive solution is to first wait for the left chopstick using a semaphore. After successfully acquiring it, wait
for the right chopstick. After both chopsticks have been acquired, eat. When done with eating, release the
two chopsticks in the same order, one by one, by call to signal. Though simplistic, this solution might lead to
a deadlock when every philosopher around the table is holding his/her left chopstick and waiting for the right
one. A variation of this solution, makes a philosopher release the left chopstick, if it can’t acquire the right
one. But even this can lead to livelock because of timing issues (as explained before). The correct solution is
to let a philosospher acquire both the chopsticks or none. This can be done within a monitor wherein only
one philosopher is allowed to check for availability of chopsticks at a time (within a test function). Look at
lecture slide for the complete pseudocode.


