
1

CS377: Operating SystemsComputer Science Lecture 11, page 1Computer Science

Today: Synchronization for
Readers/Writers Problem

• An object is shared among may threads, each belonging to one of
two classes:
– Readers: read data, never modify it
– Writers: read data and modify it

• Using a single lock on the data object is overly restrictive
=> Want many readers reading the object at once
– Allow only one writer at any point
– How do we control access to the object to permit this protocol?

• Correctness criteria:
– Each read or write of the shared data must happen within a critical section.
– Guarantee mutual exclusion for writers.
– Allow multiple readers to execute in the critical section at once.

CS377: Operating SystemsComputer Science Lecture 11, page 2Computer Science

Readers/Writers Problem
class ReadWrite {
 public:
 void Read();
 void Write();
 private:
 int readers; // counts readers
 Semaphore mutex; // controls access to readers
 Semaphore wrt; // controls entry to first
} // writer or reader
ReadWrite::ReadWrite {
 readers = 0;
 mutex->value = 1;
 wrt->value = 1;
}

2

CS377: Operating SystemsComputer Science Lecture 11, page 3Computer Science

Readers/Writers Problem
ReadWrite::Write(){
 wrt->Wait(); // any writers or readers?
 <perform write>
 wrt->Signal(); // enable others
}
ReadWrite::Read(){
 mutex->Wait(); // ensure mutual exclusion
 readers += 1; // another reader
 if (readers == 1)
 wrt->Wait(); // block writers
 mutex->Signal();
 <perform read>
 mutex->Wait(); // ensure mutual exclusion
 readers -= 1; // reader done
 if (readers == 0)
 wrt->Signal();// enable writers
 mutex->Signal(); }

CS377: Operating SystemsComputer Science Lecture 11, page 4Computer Science

Readers/Writers: Scenario 1
R1: R2: W1:
Read ()
 Read ()
 Write ()

3

CS377: Operating SystemsComputer Science Lecture 11, page 5Computer Science

Readers/Writers: Scenario 2
R1: R2: W1:
 Write ()
Read ()
 Read ()

CS377: Operating SystemsComputer Science Lecture 11, page 6Computer Science

Reader/Writers: Scenario 3
R1: R2: W1:
Read ()
 Write ()
 Read ()

4

CS377: Operating SystemsComputer Science Lecture 11, page 7Computer Science

Readers/Writers Solution: Discussion

• Implementation notes:
1. The first reader blocks if there is a writer; any other readers who try to

enter block on mutex.
2. The last reader to exit signals a waiting writer.
3. When a writer exits, if there is both a reader and writer waiting, which

goes next depends on the scheduler.
4. If a writer exits and a reader goes next, then all readers that are waiting

will fall through (at least one is waiting on wrt and zero or more can be
waiting on mutex).

5. Does this solution guarantee all threads will make progress?

• Alternative desirable semantics:
– Let a writer enter its critical section as soon as possible.

CS377: Operating SystemsComputer Science Lecture 11, page 8Computer Science

Readers/Writers Solution Favoring
Writers

ReadWrite::Write(){
 write_mutex->Wait(); // ensure mutual exclusion
 writers += 1; // another pending writer
 if (writers == 1) // block readers
 read_block->Wait();
 write_mutex->Signal();
 write_block->Wait(); // ensure mutual exclusion
 <perform write>
 write_block->Signal();
 write_mutex->Wait(); // ensure mutual exclusion
 writers -= 1; // writer done
 if (writers == 0) // enable readers
 read_block->Signal();
 write_mutex->Signal(); }

5

CS377: Operating SystemsComputer Science Lecture 11, page 9Computer Science

Readers/Writers Solution Favoring
Writers

ReadWrite::Read(){
 write_pending->Wait(); // ensures at most one reader will go
 // before a pending write
 read_block->Wait();
 read_mutex->Wait(); // ensure mutual exclusion
 readers += 1; // another reader
 if (readers == 1) // synchronize with writers
 write_block->Wait();
 read_mutex->Signal();
 read_block->Signal();
 write_pending->Signal();
 <perform read>
 read_mutex->Wait(); // ensure mutual exclusion
 readers -= 1; // reader done
 if (readers == 0) // enable writers
 write_block->Signal();
 read_mutex->Signal(); }

CS377: Operating SystemsComputer Science Lecture 11, page 10Computer Science

Readers/Writers: Scenario 4

R1: R2: W1: W2:
Read ()
 Read ()
 Write ()
 Write ()

6

CS377: Operating SystemsComputer Science Lecture 11, page 11Computer Science

Readers/Writers: Scenario 5

R1: R2: W1: W2:
 Write ()
Read ()
 Read ()
 Write ()

CS377: Operating SystemsComputer Science Lecture 11, page 12Computer Science

Reader/Writers: Scenario 6

R1: R2: W1: W2:
Read ()
 Write ()
 Read ()
 Write ()

7

CS377: Operating SystemsComputer Science Lecture 11, page 13Computer Science

Readers/Writers using Monitors (Java)
class ReaderWriter {
 private int numReaders = 0;
 private int numWriters = 0;

 private synchronized void prepareToRead () {
 while (numWriters > 0) wait ();
 numReaders++;
 }
 private synchronized void doneReading () {
 numReaders--;
 if (numReaders == 0) notify ();
 }
 public ... someReadMethod () {
 // reads NOT synchronized: multiple readers
 prepareToRead ();
 <do the reading>
 doneReading ();
 }

CS377: Operating SystemsComputer Science Lecture 11, page 14Computer Science

Readers/Writers using Monitors (Java)
private void prepareToWrite () {
 numWriters++;
 while (numReaders != 0) wait ();
 }
 private void doneWriting () {
 numWriters--;
 notify ();
 }
 public synchronized void someWriteMethod (...) {
 // syncronized => only one writer
 prepareToWrite ();
 <do the writing>
 doneWriting ();
 }
}

8

CS377: Operating SystemsComputer Science Lecture 11, page 15Computer Science

pthreads Read/write Locks

• pthreads supports read/write lock
– A thread can acquire a read lock or a write lock

• Multiple threads can hold the same read lock concurrently
• Only one thread can hold a write lock
• pthread routines:

pthread_rwlock_init()
pthread_rwlock_rdlock()

pthread_rwlock_wrlock()
pthread_rwlock_unlock()

CS377: Operating SystemsComputer Science Lecture 11, page 16Computer Science

Other Synchronizations Problems:
Dining Philosophers

• Five philosophers, each either eats or thinks
• Share a circular table with five chopsticks
• Thinking: do nothing
• Eating => need two chopsticks, try to pick up two closest

chopsticks
– Block if neighbor has already picked up a chopstick

• After eating, put down both chopsticks and go back to thinking

9

CS377: Operating SystemsComputer Science Lecture 11, page 17Computer Science

Dining Philosophers v1

Semaphore chopstick[5];

do{
 wait(chopstick[i]); // left chopstick
 wait(chopstick[(i+1)%5]); // right chopstick
 // eat
 signal(chopstick[i]); // left chopstick
 signal(chopstick[(i+1)%5]); // right chopstick
 // think
 } while(TRUE);

CS377: Operating SystemsComputer Science Lecture 11, page 18Computer Science

Dining Philosophers v2 (monitors)

monitor DP
 {

enum { THINKING; HUNGRY,
EATING) state [5] ;

condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 self [i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;

 //test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

 }

void test (int i) {
if ((state[(i + 4) % 5] != EATING)&&
. (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;
 self[i].signal () ;

 }
}

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

10

CS377: Operating SystemsComputer Science Lecture 11, page 19Computer Science

Summary
• Readers/writers problem:

– Allow multiple readers to concurrently access a data
– Allow only one writer at a time

• Two possible solutions using semaphores
– Favor readers
– Favor writers

• Starvation is possible in either case!

CS377: Operating SystemsComputer Science Lecture 11, page 20Computer Science

Last Class: Synchronization for
Readers/Writers

• Readers/writers problem:
– Allow multiple readers to concurrently access a data
– Allow only one writer at a time

• Two possible solutions using semaphores
– Favor readers
– Favor writers

• Starvation is possible in either case!

