
1

CS377: Operating SystemsComputer Science Lecture 9, page 1Computer Science

Last Class: Synchronization

•Synchronization primitives are required to ensure that only one thread executes in
a critical section at a time.

lock semaphore
monitors send & receive

High-level atomic
operations (software)

load/store interrupt disable test&setLow-level atomic
operations
(hardware)

Concurrent programs

CS377: Operating SystemsComputer Science Lecture 9, page 2Computer Science

Today: Synchronization: Locks and
Semaphores

• More on hardware support for synchronization

• Implementing locks using test&set and busy waiting

• What are semaphores?
– Semaphores are basically generalized locks.
– Like locks, semaphores are a special type of variable that supports two

atomic operations and offers elegant solutions to synchronization problems.
– They were invented by Dijkstra in 1965.

2

CS377: Operating SystemsComputer Science Lecture 9, page 3Computer Science

Atomic read-modify-write Instructions

• Atomic read-modify-write instructions atomically read a value
from memory into a register and write a new value.
– Straightforward to implement simply by adding a new instruction on a

uniprocessor.
– On a multiprocessor, the processor issuing the instruction must also be able

to invalidate any copies of the value the other processes may have in their
cache, i.e., the multiprocessor must support some type of cache coherence.

• Examples:
– Test&Set: (most architectures) read a value, write ‘1’ back to memory.
– Exchange: (x86) swaps value between register and memory.
– Compare&Swap: (68000) read value, if value matches register value r1,

exchange register r2 and value.

CS377: Operating SystemsComputer Science Lecture 9, page 4Computer Science

Implementing Locks with Test&Set
• Test&Set: reads a value, writes ‘1’ to memory, and returns the old value.

class Lock { Lock::Acquire() {
 public: // if busy do nothing
 void Acquire(); while (test&set(value) == 1);
 void Release(); }
 private: Lock::Release() {
 int value; value = 0;
} }
Lock::Lock {
 value = 0;
}

• If lock is free (value = 0), test&set reads 0, sets value to 1, and returns 0. The
Lock is now busy: the test in the while fails, and Acquire is complete.

• If lock is busy (value = 1), test&set reads 1, sets value to 1, and returns 1. The
while continues to loop until a Release executes.

3

CS377: Operating SystemsComputer Science Lecture 9, page 5Computer Science

Busy Waiting
Lock::Acquire(){
 //if Busy, do nothing
 while (test&set(value) == 1);
}

• What's wrong with the above implementation?
– What is the CPU doing?
– What could happen to threads with different priorities?

• How can we get the waiting thread to give up the processor, so the
releasing thread can execute?

CS377: Operating SystemsComputer Science Lecture 9, page 6Computer Science

Locks using Test&Set with minimal
busy-waiting

• Can we implement locks with test&set without any busy-waiting or disabling
interrupts?

• No, but we can minimize busy-waiting time by atomically checking the lock
value and giving up the CPU if the lock is busy

class Lock {
 // same declarations as earlier
 private int guard;
}
Lock::Acquire(T:Thread) {
 while (test&set(guard) == 1) ;
 if (value != FREE) {
 put T on Q;
 T->Sleep() & set guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 } }

Lock::Release() {
 // busy wait
 while (test&set(guard) == 1) ;
 if Q is not empty {
 take T off Q;
 put T on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;
}

4

CS377: Operating SystemsComputer Science Lecture 9, page 7Computer Science

Semaphores
• Semaphore: an integer variable that can be updated only using

two special atomic instructions.
• Binary (or Mutex) Semaphore: (same as a lock)

– Guarantees mutually exclusive access to a resource (only one process is in
the critical section at a time).

– Can vary from 0 to 1
– It is initialized to free (value = 1)

• Counting Semaphore:
– Useful when multiple units of a resource are available
– The initial count to which the semaphore is initialized is usually the number

of resources.
– A process can acquire access so long as at least one unit of the resource is

available

CS377: Operating SystemsComputer Science Lecture 9, page 8Computer Science

Semaphores: Key Concepts
• Like locks, a semaphore supports two atomic operations, Semaphore->Wait()

and Semaphore->Signal().

S->Wait() // wait until semaphore S
 // is available
 <critical section>

 S->Signal() // signal to other processes
 // that semaphore S is free
• Each semaphore supports a queue of processes that are waiting to access the

critical section (e.g., to buy milk).
• If a process executes S->Wait() and semaphore S is free (non-zero), it

continues executing. If semaphore S is not free, the OS puts the process on the
wait queue for semaphore S.

• A S->Signal() unblocks one process on semaphore S's wait queue.

5

CS377: Operating SystemsComputer Science Lecture 9, page 9Computer Science

Binary Semaphores: Example
• Too Much Milk using locks:
 Thread A Thread B

 Lock->Acquire(); Lock->Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock->Release(); Lock->Release();

• Too Much Milk using semaphores:
 Thread A Thread B

 Semaphore->Wait(); Semaphore->Wait();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Semaphore->Signal(); Semaphore->Signal();

CS377: Operating SystemsComputer Science Lecture 9, page 10Computer Science

Implementing Signal and Wait

=> Signal and Wait of course must be atomic!

class Semaphore {
 public:
 void Wait(Process P);
 void Signal();
 private:
 int value;
 Queue Q; // queue of processes;
}
Semaphore::Semaphore(int val) {
 value = val;
 Q = empty;
}

Semaphore::Wait(Process P) {
 value = value - 1;
 if (value < 0) {
 add P to Q;
 P->block();
} }
Semaphore::Signal() {
 value = value + 1;
 if (value <= 0){
 remove P from Q;
 wakeup(P);
} }

6

CS377: Operating SystemsComputer Science Lecture 9, page 11Computer Science

Signal and Wait: Example
P1: S->Wait();
 S->Wait(); P2: S->Wait();
 S->Signal(); S->Signal();
 S->Signal();

CS377: Operating SystemsComputer Science Lecture 9, page 12Computer Science

Signal and Wait: Example

7

CS377: Operating SystemsComputer Science Lecture 9, page 13Computer Science

Using Semaphores
• Mutual Exclusion: used to guard critical sections

– the semaphore has an initial value of 1
– S->Wait() is called before the critical section, and S->Signal() is called

after the critical section.
• Scheduling Constraints: used to express general scheduling

constraints where threads must wait for some circumstance.
– The initial value of the semaphore is usually 0 in this case.
– Example: You can implement thread join (or the Unix system call

waitpid(PID)) with semaphores:

Semaphore S;

S->value = 0; // semaphore initialization

Thread::Join Thread::Finish
 S->Wait(); S->Signal();

CS377: Operating SystemsComputer Science Lecture 9, page 14Computer Science

Multiple Consumers and Producers
class BoundedBuffer {
 public:
 void Producer();
 void Consumer();
 private:
 Items *buffer;
 // control access to buffers
 Semaphore mutex;
 // count of free slots
 Semaphore empty;
 // count of used slots
 Semaphore full;
}
BoundedBuffer::BoundedBuffer(
int N){
 mutex->value = 1;
 empty->value = N;
 full->value = 0;
 new buffer[N];
}

BoundedBuffer::Producer(){
 <produce item>
 empty->Wait(); // one fewer slot,
or wait
 mutex->Wait(); // get access to
buffers
 <add item to buffer>
 mutex->Signal(); // release
buffers
 full->Signal(); // one more used
slot
}
BoundedBuffer::Consumer(){
 full->Wait(); //wait until there's
an item
 mutex->Wait(); // get access to
buffers
 <remove item from buffer>
 mutex->Signal(); // release
buffers
 empty->Signal(); // one more free
slot
 <use item> }

8

CS377: Operating SystemsComputer Science Lecture 9, page 15Computer Science

Multiple Consumers and Producers
Problem

CS377: Operating SystemsComputer Science Lecture 9, page 16Computer Science

Summary
• Locks can be implemented by disabling interrupts or busy waiting

• Semaphores are a generalization of locks

• Semaphores can be used for three purposes:
– To ensure mutually exclusive execution of a critical section (as locks do).
– To control access to a shared pool of resources (using a counting

semaphore).
– To cause one thread to wait for a specific action to be signaled from another

thread.

