CMPSCI 377 Operating Systems Fall 2008

Lecture 8: September 25
Lecturer: Prashant Shenoy Scribe: Shashi Singh

8.1 Synchronization

As we already know, threads must ensure consistency; otherwise, race conditions (non-deterministic results)
might happen.

Now consider the “too much milk problem”: two people share the same fridge and must guarantee that
there’s always milk, but not too much milk. How to solve it? First, we consider some important concepts
and their definitions:

e Mutex: prevents things from operating on the same data at the same time;

e Critical section: a piece of code that only one thread can execute at a time;

e Lock: a mechanism for mutual exclusion; the program locks on entering a critical section, acesses the
shared data, and then unlocks. Also, a program waits if it tries to enter a locked section.

e Invariant: something that must always be true when not holding the lock.
For the above mentioned problem, we want to ensure some correctness properties. First, we want to guarantee
that only one person buys milk when it is neeed (this is the safety property, aka “nothing bad happens”).
Also, we want to ensure that someone does buy milk when needed (the progress property, aka “something
good eventually happens”). Now consider that we can use the following atomic operations when writing the
code for the problem:

e “leave a note” (equivalent to a lock)

e “remove a note” (equivalent to a unlock)

e “don’t buy milk if there’s a note” (equivalent to a wait)
Our first try could be to use the following code on both threads:

if (no milk and no note)
leave note
buy milk
remove note

Unfortunately, this doesn’t work because both threads could simultaneously verify that there’s no note and
no milk, and then both would simultaneously leave a note, and buy more milk. The problem in this case is
that we end up with too much milk (safety property not met).

Now consider our solution #2:

Thread A:



8-2 Lecture 8: September 25

leave note "A"
if (no note "B")
if (no milk)
buy milk
remove note "A"

Thread B:

leave note "B"
if (no note "A")
if (no milk)
buy milk
remove note "B"

The problem now is that if both threads leave notes at the same time, neither will ever do anything. Then,
we end up with no milk at all, which means that the progress property not met. Solution #3 will be discussed
on the next class.

8.2 Concurrency

When programming with threads, processes or with any type of program that has to deal with shared data,
we have to take into account all possible interleaving of these processes. In other words, in order to guarantee
that concurrent processes are correct, we have to somehow guarantee that they generate the correct solution
no matter how they are interleaved.

Earlier we discussed the “Too Much Milk” problem, and realized that it’s very difficult to come up with an
approach that always solves it properly. Let us now consider an approach that does work:

Thread A

leave note A
while (note B)
do nothing
if (no milk)
buy milk
remove note A

Thread B

leave note B
if (no note A)
if (no milk)
buy milk

remove note B

This approach, unlike the two examples considered on the previous class, does work. However, it is not
easy to be convinced that these two algorithms, when taken together, always produce the desired behavior.
Moreover, these pieces of code have some drawbacks: first, notice that Thread A goes into a loop waiting



Lecture 8: September 25 8-3

for B to release its note. This is called “busy waiting”, and is generally not a good idea because Thread A
wastes a lot of CPU, and because it can’t execute anything usefull while B is not done. Also, notice that
even though both threads try to perform the exact same thing, they do it in very different ways. This is a
problem specially when we were to write, say, a third thread. This third thread would probably look very
different than both A and B, and this type of assymmetric code does not scale very well. So the question
is: how can we guarantee correctness and at the same time avoid all these drawbacks? The answer is that
we can augment the programming language with high-level constructs capable of solving synchronization
problems. Currently, the best known constructs used in order to deal with concurrency problems are locks,
semaphores, monitors.

8.2.1 Locks/Mutex

Locks (also known as Mutex) provide mutual exclusion to shared data inside a critical session. They are
implemented by means of two atomic routines: acquire, which waits for a lock, and takes it when possible;
and release, which unlocks the lock and wakes up the waiters. The rules for using locks/mutex are the
following:

1. only one person can have the lock;
2. locks must be acquired before accessing shared data;
3. locks must use release after use;

4. locks are initially released.
The syntax for using locks in C/C++ is the following:

pthread_mutex_init(&1);

pthread_mutex_lock(&1);
update data // this is the critical section
pthread_mutex_unlock(&l)

Let us now try to rewrite the “Too Much Milk” problem in a cleaner and more symmetric way, using locks.
In order to do so, the code for Thread A (and also for Thread B) has to be the following:

pthread_mutex_lock(&l)
if (no milk)

buy milk
pthread_mutex_unlock(&1)

This is clearly much easier to understand than the previous solutions; also, it is more scalable, since all
threads are implemented in the exact same way.

Now, how could one go about implementing locks? No matter how we choose to implement them, we must
have some hardware support. One possibility to implement locks is to disable interrupts, since these are the
only way that a CPU has to change what it is doing; in other words, if we keep the CPU from switching
processes, we can guarantee that only one process (the active one) will have access to the shared data.
Another option would be to make use of atomic operations, such as test&set. This operation (which usually



8-4 Lecture 8: September 25

correspond to an assembly instruction), is such that test&set(x) returns 1, if x=1; otherwise, if x=0, it
returns 0 and sets x to 1. All this is of course implemented atomically. Having this type of atomic operation,
one could implement thread_lock(l) simply as

while test&set(l) do nothing;
and thread_unlock(l) simply as
1=20;
Summary:

e Communication between threads is done implicitly, via shared variables;
e Critical sections are regions of code that access shared variables;
e Critical sections must be protected by synchronization;

— We need primitives that ensure mutual exclusion;
— Writing “personalized” solutions to concurrency is tricky and error-prone;

— The solution is to introduce general high-level constructs into the language, such as pthread_lock()
and pthread_unlock().



