Lecture 2, September 4

Introto C/C++

Instructor: Prashant Shenoy, TAas$h Singh

1 Introduction

C++ is an object-oriented language and is onehibst frequently used languages for developmentalits
efficiency, relative portability, and its large nhen of libraries. C++ was created to add OO progmang to
another language, C. C++ is almost a strict supefse and C programs can be compiled by a C++ demp
In fact, any of the C++ assignments in 377 can dmapieted strictly using C, but you will probably be
more comfortable using C++.

When comparing C++ and Java, there are more sitigitathan differences. This document will point the
major differences to get you programming in C+sgagkly as possible. The highlights to look at Gret's
handling of pointers and references; heap and staekory allocation; and the Standard Template kybra
(STL).

2 Basic Structure

First, we compare two simple programs written radand C++.

Java Hello World (filenameHel | oV@r | dApp. j ava): C++ Hello World (filename:Hel | oVr | d. cpp):
#i ncl ude <i ostreanr
class HelloWrldApp { using nanespace std;
public static void min(String[] args) {
Systemout.printin("Hello World!'"); int main (){
} cout << "Hello Woirld!" << endl;
} return O;
}

In Java the entry point for your program is a mdthamed mai n inside a class. You run that particutai n
by invoking the interpreter with that class nanmeCk+, there is only ONErai n function. It must be named
mai n. It cannot reside within a classmai n should return an integer - 0 when exiting normallis points
out one major difference, which is C++ can havections that are not object methods. Main is oného$e
functions.

Theusing andinclude lines in the C++ program allow us to use extecodle. This is similar tamport in Java.

3 Compiling and Running

Java: C++:
javac HellowrldApp.java g++ -0 Hellowrld HelloWwrld. cpp
java Hel | oWor | dApp ./ Hell oworld

In Java, you produce bytecode usipgvac and run it using the Java just-in-time compilgava. C++ uses
a compiler, which creates a standalone executdbis. executable can only be run on the same phatfs
it was compiled for. For instance, if you compilelldWorld for an x86 Linux machine, it will not ruon a

Mac.

The ./ at the beginning of run line says to run the HAWwId that is in the current directory. This has

nothing to do with C++, but many Unix/Linux systedt not include the current directory in the segratn.
Also, it makes sure you get thight HelloWorld. For instance, there is a Unix progreafiedtest that can be

easily confused with your own program nartesti

4 Intrinsic Types

Java: C++:

byte nyByte; char nyByte;
short nyShort; short nyShort;
int nylnteger; int nylnteger;
long nylLong; long nylLong;
float nyFl oat; float nyH oat;

doubl e nyDoubl e;

doubl e nyDoubl e;

char
bool

char nyChar;
bool ean nyBool ean;

nyChar ;
nyBool ean;

So the differences between Java and C++ intrigpiest are:
just use char; and the boolean type is named bool.

5 Conditionals

C++ does not have a separate type fes byt

Java: C++:
boolean tenp = true; bool tenmp = true;
boolean tenp2 = false; int i = 1
if (tenp) if (tenp)
Systemout.printin("Hello Wr|dl"); cout << "Hello World'" << endl;
if (tenp == true) if (tenp == true)
Systemout.printin("Hello Wrl|d!"); cout << "Hello Wirld" << endl;
if (tenp = true) // Assigns tenp to be true if (i)
Systemout.printin("Hello Wrld"); cout << "Hello _Worldl" << endl;

Conditionals are almost exactly the same in JadaGt. In C++, conditionals can be applied to isteg—
anything that is non-zero is true and anythingithaéro is false.

NOTE: Be very careful in both C++ and Java with = and la=both languages, = does an assignment and ==
does not - it tests equality. In C++, you can navitds with integers. For instance:

if (x = 0)

}

sets x to be 0 and evaluates to false. Unless gow kvhat you are doing, always use == in condil&na
In Java, the double form of the operators giveststicuiting: && and||. In C++, it does the same thing.

6 Other control flow

For loops, while, and do-while are the same synfaxt also has switch statements with the same xsynta
Remember break.

7 Pointersand Reference Variables

Pointers and reference variables are the mostulifftoncept in C++ when moving from Java. Everjedb
(and simple data types), in C++ and Java residkarmemory of the machine. The location in memsry
called an address. In Java you have no accesattadtiress. You cannot read or change the addrebgeots.
In C++ you can.

In C++, a pointer contains the address of an olgectata type. Pointers point to a specified type are
denoted with *.

i nt *ptr;

The variable pt r is a pointer to an integer. At the moment ptr degiscontain anything, it is uninitialized.
However, we can find out the address of some integeng &, and store it in ptr. For instance:

int *ptr, *ptr2;

int x = 5
int y = 4
ptr = &x;

ptr2 = &

At the end of that example, ptr contains the addoés, and ptr2 contains the address of y. Addéily we
candereference the get the value of what ptr points to:

i nt *ptr;
int x = 5
ptr = &x;
cout << *ptr << endl; [lprints 5

There are other tricky things you can do with paisi but that is all you should need for 377. It yeant
antoehr reference on the subject, take a lookhatt p: / / www. codepr oj ect . coml cpp/ poi nters.
asp.

There is something else in C++ called a referermmeéable. These are most useful in function argumen
discussed later.

7.1 Assignment

In C++, the assignment operator works a littleatéht than in Java. For simple data types, it wexegtly the
same. However, for objects it works differently.

In Java, assignment copies a reference to thetolije€++, it COPIES the object. If you want to gop
reference, then use pointers. For instance, in C++:

Somed ass X, V;
Sormed ass *a;

x=y; [/ This copies object y to x. Mdifying x does NOT nodify V.

a=&x; // This copies a reference to x.
/I Mdifying the object a points to nodifies x.

7.2 Object Instantiation

In Java, if you declare and instantiate an objketthis:

Sonmed ass Xx;

X = new Soned ass();

In C++, if you declare an object, it instantiatef®r you:

Soned ass X;

7.3 The- > Operator

For pointers to objects you can call methods andifynoariables like so:

Soned ass x;
Soned ass *a;

a=&x;
(*a). SoneMet hod();

So we have dereferenced a and called its SomeMetiislis ugly. We can use the > operator to do the
same thing:

Soned ass X;
Soned ass *a;

a=&x;
a- >SomeMet hod() ;

8 Global Variables, Functions and Parameters

In C++, you can have variables that are not membgsbjects. That is called a global variable. aiTh
variable is accessible from any function or objecthe same source fileNOTE: Global variables are
generally considered poor programming form. Usentheliciously when necessary.

4

Similar to global variables, there are functionatthre not methods. For instance main is not a adetif
any object. Similarly you can create new functitimst are not contained in objects. These functiars
take parameters just like methods. For instance:

#i ncl ude <iostreanp
using nanespace std;

void foo(int i){
cout << i << end; // Prints 1

}

int min (){
foo (1);

return 0

}

Similar to Java, C++ functions can return nothingid), simple data types, or objects. If you ratan
object in C++, you are reutrning a COPY of thateahj not a reference. You can return a pointeano
object, if you want to return a reference.

But here is where Java and C++ have one majorrelifte: parameters. In Java simple data types asegy
value (a copy), and objects are passed by referémee++ both simple data types and objects arequaby
value! However, functions would be fairly useles€++ if we couldn’t change what we passed. Thathere
pointers come in. Quite simply:

#i ncl ude <i ostreanp

using nanespace std;

void foo(int =j){

I = 6
}
void bar(int i){
i = 10;
}
int min (){
int i = 0;
foo (&);
cout << i << endl; // prints 6
bar (i);
cout << i << endl; [// prints 6

bar (&); // WD NOT OOWILE

return 0

}

In the above example, we have a function foo thets a pointer to an integer as a parameter. Wieecail
foo, we have to pass it the address of an int&gefoo is modifying the same i as main. The fumchar

takes i by value and any changes made are lostlasheall to bar attempts to call bar with an addrto an
integer, not an integer, and would not compile.
In C++, there is a slightly simpler way of accoraplng the exact same thing:

#i ncl ude <iostreanv
using nanespace std;

void foo(int &){
i = 6
}

int min (){
int i = 0

foo (i);
cout << i << endl; /I prints 6.

return O;

}

The integer i in foo is a reference variable. ketacare of passing the address, and derefereinaingn it is
used in foo. This is cleaner and easier to undaistaut both are valid. However, you cannot avbaluglier
form. If | give you a function to call then it witle of the first form.

9 Arrays

Java and C++ both have arrays. Indexes start ahd,you index into them usirig]. However, arrays
behave a little differently in C++. First, the mlents of the array do not need to be allocated méth, C++
allocates them for you. For instance, if you @eat array of Objects, it is an array of Objecats,am array of
references like in Java. Second, C++ arrays dkmmiv how large they are. You have to keep trackhcf
yourself. C++ will not stop you from going past thed or beginning of the array. This is a prograngni
error and will often crash your program. Thirdydu refer to an array without a subscript, C++tagdhis is a
pointer to the first element. For instance, in thisgram we pass a pointer to qux to foo, which ifiesdthe
contents of the first element.

#i nclude <iostreanr
using nanespace std;
void foo (int bar[]){

bar[0] = 5
}

int main(){
int qux[10];

qux[0] = 10;
foo (qux);

cout << qux[0] << endl; Il Prints 5

}

You can also create an array of pointers.

#i ncl ude <i ostreanp
using nanmespace std

void foo (intx par[]){
*(bar[0]) = 5
}

int main(){
int« qux[10];

qux[0] = new int;

“(qux[0]) = 10;

foo(qux);

cout << *(qux[0]) << end; [/l Prints 5

10 Structsand Classes

C++ has something called a struct. Think of it adags with no methods, only public member varisble
You can refer to the variables using '.". If youldh@ pointer to a struct, you can use the operator. For
instance:

#i ncl ude <iostreane
using nanespace std;

struct foof
int a;

}s

int min (){
foo b, *c; // b is a struct, c points to a struct

b.a = 6

c = &

c->a = 7; [/l Renenber ¢ points to the struct b
cout << h.a << end; [l prints 7.

return O;

}

As for classes, the syntax is a little differentt imany things are the same. In
Java, you have:

public class IntCell
{
public IntCell()
{ this(0); }

public IntCell(int initialValue)
{ storedvValue = initialValue; }

public int getValue()
{ return storedValue; }

public int setValue(int val)
{ storedvalue = wval; }

private int storedVal ue;

}
and in C++, you have:

class IntCell

{
publi c:

IntCell(int initialValue = 0)
{ storedvalue = initialValue; }

int getValue()
{ return storedValue;, }

int setValue(int val)
{ storedvValue = val; }

private:

int storedval ue;
b
The end of a C++ class has a semicolon. DO NOT HBERIG. The compilation errors will not tell youig
missing. The compiler will give you strange errgosi don’t understand.
In C++, there is no visibility specifier for theask.
In C++, public and private are applied to sectims&de the class. In Java, one constructor caranalher. You
can't do this in C++. The above syntax says thatfault value is O if one is not passed. Thistrnes fixed,
compile time value.
There is also a slightly nicer way to declare das& C++. This is exactly the same as the previou
definition, we have just split the interface and tmplementation.

class IntCell

{
public:
IntCell (int initialValue);
int getValue();
int setValue(int val);

private:

int storedVal ue;

}s

IntCell::IntCell (int initialValue = 0){
storedvalue = initial Val ue;

}

int IntCell::getValue(){
return storedVal ue;

}
int IntCell::setValue(int val)
{
storedvalue = val;
}

11 Operator Overloading, Inheritance

Yep, C++ has both.

12 Stack and Heap Memory Allocation

This is the second most difficult thing to get adia on besides pointers.

121 Stack Memory

In a C++ function, local variables and parameteesadlocated on the stack. The contents of theksg
FREED (read destroyed) when the function endsirfstance in this example:

int foo (int a){
int b = 10;
return O;

}

After foo ends you can't access a or b anymores Shouldn't surprise you at all, Java works theesaray.
However, now that we have pointers you can do dungeteally bad:

#i ncl ude <i ostreanp
using nanespace std;

/1 BAD

intx foo (){
int b = 10

return &b;

}

int main(){
int *a;

a = foo();

cout << *a << endl; [/ Print out 107

return O;

}

In this example, we have a function foo that refuanpointer to a stack allocated variable b. H®@mev
remember when foo returns, the memory location o fseed. We try to dereference the pointer o b
the cout statement. Dereferencingiae pointer to freed memory, makes your program die.

122 Heap Memory

However, what if we want a variable to live on aftee end of a function? There are two ways td.deirst
is to make it global. Then it will live for the énat lifetime of the program. This is poor programmppractice
as well as not being dynamic. (How many objectgaloneed?)

Instead we allocate from the heap using new, jkistih Java. However, new returns a pointer (areefee,
just like in Javal). For instance:

#i ncl ude <i ostreanp
using nanespace std;

/1 GOD

intx foo (){
i nt *p;

b = new (int);
*b o= 10;

return b;

}

int main(){

int g

a = foo();

cout << *a << endl; /1 Print out 10!
return O;

}

Now b is allocated on the heap and lives forever!tBere is one slight problem in C++. Java knowenvyou
are no longer using an object and frees it fromhttegp. C++ does not so you have to tell it whenagreudone.
For instance in Java this is legal:

bar qux;

10

for (int i=0; i < 1000000; i++)
qux = new bar();

Well it is legal in C++ too, but you have what mlled amemory leak. You are allocating objects and never
freeing them. In C++ you must do this:

bar *qux;
for (int i=0; i < 1000000; i++){
qux = new (bar);

delete (qux);
}

Just remember that f&VERY new, you must do a delete exactly once. If yoletdememory that has
already been deleted once, you are deleting a stafger. Again, your program will die a horribleasty
death. One strategy to diagnose this is to commanyour calls to delete and see if your prograithvebrks
(but sucks up memory). Another good idea is tgeeiters to NULL after you delete them and alwaysok
that the pointer is NOT NULL before calling delete.

13 Input, Output, Command Line Parameters

131 Input

Say you want to read something from a file.

#i ncl ude <i ostreanr
#i nclude <fstreanr
using nanespace std

int nmain(){

int a
i fstream input;

i nput . open("myfile");
while (input >> a);

i nput. cl ose();

i nput. cl ear();

return O;

}

This allows you to read a bunch of integers fronfileyYou only need clear if you intend to use thput
object again. We will give you most of the code yeed for input.

13.2 Output

Say you want to print two integers. Very easy:

#i ncl ude <i ostreanp
using nanmespace std

int main(){

11

cout << a <« " " <« b << end; // Prints 5 6
return O;
}
The endl is an endofline character.
13.3 Command line parameters
Just follow the example:
#i nclude <iostreanr
usi ng nanespace std;
int main(int arge, char = argv[]){
int a
i fstream input;
if (argc !'= 3){ [/ e for the program nane and two paraneters
cout << "lnvalid uysage" << endl,
return -1,
}
int a = atoi (argv[l]); [/ First parameter is a nunber
/1 atoi converts from characters to int
i nput . open(argv[2]); /1l Second paraneter is the nane of a file

i nput. cl ose();

return O;

12

