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Why C?

 Low-level
– Direct access to memory
– WYSIWYG (more or less)
– Effectively no runtime system

• No garbage collector
• No other threads
• No “read” or “write barriers”

 Efficient
– Space & time
– C: effectively portable assembly code
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OK, Why C++?

 C++: extends C
– Upwardly-compatible

 Adds significant software engineering
benefits
– Classes
– Encapsulation (private)
– Templates (“generics”)
– Other modularity advantages
– Inlining instead of macros
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Outline, part I

 Basics – compiling & running
 Intrinsic types, conditionals, etc.
 Pointers + Reference variables

– Assignment
– Objects
– &, *, ->

 Stack vs. heap
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Outline, part II

 Functions
– Parameter passing

 Structs & classes
 Overloading & inheritance
 Stack vs. heap
 I/O, command-line
 STL
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Basics

 Main & compilation
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Intrinsic Types

 Essentially identical
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Conditionals

 Mostly the same
– C/C++: nonzero int same as true
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File I/O

 Simple stream-based I/O
– cout << “foo” print foo
– cin >> x read x from the console
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Command-line Arguments

 Again, similar to Java
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Key Differences

 Differences between C/C++ and Java
– Assignment
– Pointers
– Parameter passing
– Heap & Stack
– Arrays
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Assignment

 Java assignment: makes reference
 C++ assignment: makes copy
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Pointers & Friends

 “Pointers are like jumps, leading wildly from
one part of the data structure to another.
Their introduction into high-level languages
has been a step backwards from which we
may never recover.”
– C.A.R. Hoare
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Pointers & Friends

 Concept not in Java: address manipulation
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Functions & Parameter Passing

 C/C++ – all parameters copied by default
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Parameter Passing

 To change input, pass pointer
– or call by reference
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Pass by Reference

 Syntactic sugar:
foo (int &i) = pass by reference
– Secretly does pointer stuff for you
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Stack & Heap

 In C/C++ as in Java, objects can live on:
– Stack = region of memory for temporaries

• Stack pointer pushed on function entry
• Popped on function exit

– Heap = distinct region of memory for persistent
objects

• C/C++ – explicitly managed

 Pointers introduce problems!
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The Stack

 Stack data: new every time

20UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST  MHERST  ••   Department of Computer Science Department of Computer Science 20

Big Stack Mistake

 Never return pointers to the stack!
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The Heap

 Allocate persistent data on heap with new
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Explicit Memory Management

 Java heap – garbage collected
 C/C++ – explicit memory management

– You must delete items (or memory leak)

– Delete them too soon (still in use) – crash
• “Dangling pointer” error

– Delete something twice – crash
• “Double-free” error
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Classes & Objects

 No “top” object (as in Java Object)
– Also: C++ has no interfaces but has multiple

inheritance – stay far away
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Struct Member Access

 struct = class with everything public
– Use these sparingly
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Class Declaration

 Pretty similar
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Arrays

 Numerous differences
– Arrays do not have to be allocated with new
– Array bounds not checked
– Item = pointer to start of array
– Arrays just syntactic sugar

for pointer arithmetic! (scary! avoid!)
• v = 12; *(Item + v) = 1;
• Same as Item[12] = 1;

– Note: sizeof(x) = number of bytes to hold x
 Multi-dimensional arrays (matrices)

– just arrays of pointers to arrays
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Other Features

 Operator overloading
– New meanings to existing operators

• int operator+(MyType& a, MyType& b);

– Controversial, but useful for things like complex
math, matrix operations

• int& operator()(int x, int y);

 Templates
– A.k.a. generics in Java
– template <class X> void foo (X arg);
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Standard Template Library(STL)

 Implements useful data structures
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End of Lecture
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Classes & Objects

 No “top” object (as in Java Object)
– Also: C++ has no interfaces but has multiple

inheritance – stay far away
 Key difference for you – not all methods

dynamically-dispatched
– Methods associated with declared type rather

than dynamic type unless labeled virtual


