
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science

Operating Systems
CMPSCI 377, Lec 2

Intro to C/C++

Prashant Shenoy
University of Massachusetts

Amherst

2UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 2

Why C?

 Low-level
– Direct access to memory
– WYSIWYG (more or less)
– Effectively no runtime system

• No garbage collector
• No other threads
• No “read” or “write barriers”

 Efficient
– Space & time
– C: effectively portable assembly code

3UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 3

OK, Why C++?

 C++: extends C
– Upwardly-compatible

 Adds significant software engineering
benefits
– Classes
– Encapsulation (private)
– Templates (“generics”)
– Other modularity advantages
– Inlining instead of macros

4UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 4

Outline, part I

 Basics – compiling & running
 Intrinsic types, conditionals, etc.
 Pointers + Reference variables

– Assignment
– Objects
– &, *, ->

 Stack vs. heap

5UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 5

Outline, part II

 Functions
– Parameter passing

 Structs & classes
 Overloading & inheritance
 Stack vs. heap
 I/O, command-line
 STL

6UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 6

Basics

 Main & compilation

7UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 7

Intrinsic Types

 Essentially identical

8UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 8

Conditionals

 Mostly the same
– C/C++: nonzero int same as true

9UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 9

File I/O

 Simple stream-based I/O
– cout << “foo” print foo
– cin >> x read x from the console

10UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 10

Command-line Arguments

 Again, similar to Java

11UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 11

Key Differences

 Differences between C/C++ and Java
– Assignment
– Pointers
– Parameter passing
– Heap & Stack
– Arrays

12UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 12

Assignment

 Java assignment: makes reference
 C++ assignment: makes copy

13UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 13

Pointers & Friends

 “Pointers are like jumps, leading wildly from
one part of the data structure to another.
Their introduction into high-level languages
has been a step backwards from which we
may never recover.”
– C.A.R. Hoare

14UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 14

Pointers & Friends

 Concept not in Java: address manipulation

15UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 15

Functions & Parameter Passing

 C/C++ – all parameters copied by default

16UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 16

Parameter Passing

 To change input, pass pointer
– or call by reference

17UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 17

Pass by Reference

 Syntactic sugar:
foo (int &i) = pass by reference
– Secretly does pointer stuff for you

18UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 18

Stack & Heap

 In C/C++ as in Java, objects can live on:
– Stack = region of memory for temporaries

• Stack pointer pushed on function entry
• Popped on function exit

– Heap = distinct region of memory for persistent
objects

• C/C++ – explicitly managed

 Pointers introduce problems!

19UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 19

The Stack

 Stack data: new every time

20UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 20

Big Stack Mistake

 Never return pointers to the stack!

21UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 21

The Heap

 Allocate persistent data on heap with new

22UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 22

Explicit Memory Management

 Java heap – garbage collected
 C/C++ – explicit memory management

– You must delete items (or memory leak)

– Delete them too soon (still in use) – crash
• “Dangling pointer” error

– Delete something twice – crash
• “Double-free” error

23UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 23

Classes & Objects

 No “top” object (as in Java Object)
– Also: C++ has no interfaces but has multiple

inheritance – stay far away

24UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 24

Struct Member Access

 struct = class with everything public
– Use these sparingly

25UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 25

Class Declaration

 Pretty similar

26UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 26

Arrays

 Numerous differences
– Arrays do not have to be allocated with new
– Array bounds not checked
– Item = pointer to start of array
– Arrays just syntactic sugar

for pointer arithmetic! (scary! avoid!)
• v = 12; *(Item + v) = 1;
• Same as Item[12] = 1;

– Note: sizeof(x) = number of bytes to hold x
 Multi-dimensional arrays (matrices)

– just arrays of pointers to arrays

27UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 27

Other Features

 Operator overloading
– New meanings to existing operators

• int operator+(MyType& a, MyType& b);

– Controversial, but useful for things like complex
math, matrix operations

• int& operator()(int x, int y);

 Templates
– A.k.a. generics in Java
– template <class X> void foo (X arg);

28UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science

Standard Template Library(STL)

 Implements useful data structures

29UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 29

End of Lecture

30UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer Science Department of Computer Science 30

Classes & Objects

 No “top” object (as in Java Object)
– Also: C++ has no interfaces but has multiple

inheritance – stay far away
 Key difference for you – not all methods

dynamically-dispatched
– Methods associated with declared type rather

than dynamic type unless labeled virtual

