
Towards Autonomic Fault Recovery in System-S

Gabriela Jacques-Silva∗

Center for Reliable and High-Performance Computing
University of Illinois at Urbana-Champaign

Urbana, IL, USA

Jim Challenger, Lou Degenaro, James Giles, Rohit Wagle
IBM Research

T. J. Watson Research Center
Hawthorne, NY, USA

Abstract

System-S is a stream processing infrastructure which en-
ables program fragments to be distributed and connected
to form complex applications. There may be potentially
tens of thousands of interdependent and heterogeneous pro-
gram fragments running across thousands of nodes. While
the scale and interconnection imply the need for automa-
tion to manage the program fragments, the need is inten-
sified because the applications operate on live streaming
data and thus need to be highly available. System-S has
been designed with components that autonomically manage
the program fragments, but the system components them-
selves are also susceptible to failures which can jeopardize
the system and its applications.

The work we present addresses the self healing nature
of these management components in System-S. In particu-
lar, we show how one key component of System-S, the job
management orchestrator, can be abruptly terminated and
then recover without interrupting any of the running pro-
gram fragments by reconciling with other autonomous sys-
tem components. We also describe techniques that we have
developed to validate that the system is able to autonomi-
cally respond to a wide variety of error conditions including
the abrupt termination and recovery of key system compo-
nents. Finally, we show the performance of the job manage-
ment orchestrator recovery for a variety of workloads.

1. Introduction

Stream processing has recently gained interest as a new
way to analyze streaming data such as audio, video, chat,

∗Sponsored by CAPES/Brazil

voice-over-IP, and email for applications ranging from mon-
itoring customer service satisfaction to fraud detection in
the financial industry. Being able to analyze data as it
streams rather than storing and using data mining tech-
niques offers the promise of more timely analysis as well as
allowing more data to be processed with fewer resources. In
this paper, we describe some of the autonomic self-healing
capabilities of a stream processing system we are prototyp-
ing called System-S [1, 14, 10].

In System-S, the observation has been made that stream-
ing analysis lends itself well to componentization and distri-
bution. In particular, large and complex streaming analysis
applications can be broken up into small software build-
ing blocks that we call process elements (PEs). For ex-
ample, a filtering PE may consume a first stream and pro-
duce a second filtered stream that is consumed by a cor-
relation PE that correlates the filtered stream with a third
stream of data. This composition of applications by con-
necting PE building blocks together is a powerful feature
because it allows for rapid development and introduction
of new types of analysis by creating new PEs that are able
to produce and consume streams. Even more importantly,
this division of applications into building blocks connected
by streams provides a natural way to distribute the compu-
tation task among a cluster of resources; PEs of different
types can be placed on different nodes and the streaming
data for PEs connected in the application can be commu-
nicated over the network. This distribution is particularly
important for scaling in streaming applications because the
algorithms involved can be compute intensive.

To better understand the complexity, we describe in more
detail the architecture of the System-S runtime. System-S
is designed to be a highly-scaled distributed system meant
to support high volume stream processing. It is composed
of a number of loosely-coupled runtime components and

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

extensive tooling including an IDE to support composition
of streaming jobs, a sophisticated planner, and visualization
tools. The system runtime consists of a number of major
components (see Figure 1):

• A framework upon which the job management, dis-
patching, and individual node controller components
are built. We refer to the framework and the compo-
nents built upon it as the job management component
(JMN). The JMN itself is comprised of the central “or-
chestrator”, the “resource manager” (RMN), and the
“master node controller” (MNC) which will be de-
scribed in more detail.

• an optimizer (OPT) which determines initial place-
ment of processes and initial resource allocations,
and continually adjusts both placement and allocations
throughout the life-cycle of a job,

• a “stream processing core” (SPC) which manages the
streaming communication system,

• a “dataflow graph manager” (DGM) which manages
and tracks the graph of connections among the various
streaming processes.

Figure 1. System-S Architectural Overview

The purpose of the system is to support the scheduling,
dispatch, and management of streaming jobs. A streaming
job is defined to consist of one or more discrete PEs that
use a highly optimized communication layer to exchange

streaming data. PEs contain application logic and perform
specialized functions such as filtering, annotating, segment-
ing, or joining of streams.

While streaming, componentization, and distribution all
provide many advantages and capabilities for System-S, the
features also introduce considerable management complex-
ity. It is necessary for the system to distribute, start, stop,
and recover individual PEs within the distributed system as
well as the supporting system infrastructure. Because the
applications require data to be streamed from PE to PE, the
loss or failure of a single PE can cause an entire applica-
tion to lose its ability to provide meaningful analysis un-
til a repair is made. Further complicating the management
task is the scale of the applications we have in mind that
might incorporate tens of thousands of PEs running across
thousands of heterogeneous nodes. To allow the stream-
ing applications to continue to analyze live streaming data
when there are failures of PEs, the infrastructure for such
a system must have autonomic self-healing capabilities for
both the application components and system infrastructure
components; it is impractical for humans to keep the system
running adequately without automation.

System-S had been designed with autonomics in mind.
For example, as data changes occur such that there is sud-
denly less useful data on a stream, the system can shift re-
sources to PEs processing other streams. As another ex-
ample, if a node hosting a PE fails, the system can au-
tomatically allocate a new node, move the PE to the new
node, and connect it to all of its producer and consumer
streams. The work we present addresses the self healing
nature of these management components in System-S. In
particular, we show how the job management orchestrator
can be abruptly terminated and then recover without inter-
rupting any of the running program fragments by reconcil-
ing with other autonomous system components. We also
describe techniques that we have developed to validate that
the system is able to autonomically respond to a wide vari-
ety of error conditions including the abrupt termination and
recovery of key system components. Finally, we show the
performance of the job management orchestrator recovery
for a variety of workloads.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work. Section 3 presents a technical
overview of JMN. Section 4 describes the mechanism for
self-healing of the JMN orchestrator such that the applica-
tions running in the system are not disrupted. Section 5 dis-
cusses a technique for validating the recovery mechanism
under a variety of conditions. Section 6 describes the rela-
tive performance for recovery for a variety of system work-
loads. Section 7 provides future work and conclusions.

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

2. Related Work

The JMN is being developed as part of System-S, an
extreme-scale, streaming, data mining system described in
Section 1. It is the control and management part of the dis-
tributed runtime, and must cooperatively interact with other
parts of System-S. In particular, the JMN must interact with
the stream processing core (SPC), dataflow graph manager
(DGM), optimizer (OPT), resource manager (RMN), and
supporting services such as security, an IDE, and cross-site
management services.

Our work is also related to systems providing distribu-
tion management, autonomic management, and validation.
Distribution Management

The JMN is related to several existing batch schedulers
[11] including Moab/Maui, LoadLeveler whose ancestor is
Condor [17], Load Sharing Facility, Portable Batch System,
Sun Grid Engine, and OSCAR. The high-level goal of these
systems is to efficiently distribute and manage work across
resources. While some of these systems are able to scale
to large number of nodes and it is conceivable that they
could scale to thousands of nodes, the nature of the System-
S workload is fundamentally different than the workloads
considered by these systems and it was not feasible to adapt
them. Thus the JMN infrastructure was developed from
scratch to support System-S requirements while leveraging
state of the art technologies.
Autonomic Management

Because System-S is expected to scale to thousands of
nodes and because of the interconnected nature of its ap-
plications, it must embody autonomic capabilities [15] to
make management of the system feasible. For example,
hardware failures are inevitable and the system must be able
to adapt by reconstructing applications on other nodes to
keep the analysis running. A related “Laundromat Model”
[12] scheme for automatic management and process migra-
tion works by making the unit of control a virtual machine.
This technique allows for migration of processes, but does
not consider the relationships between them. Another re-
lated management infrastructure for stream processing [8]
uses resource constraints and utility functions of business
value to optimize application resource utilization. The Bo-
realis system [2] lets users trade off between availability
and consistency in a stream processing system by setting
a simple threshold. Investigation of software failure and re-
covery in an autonomically managed environment has also
been undertaken in the context of operating systems [4] and
intrusion detection and recovery [16].
Validation

Key to any successful autonomic system is the ability
to be reasonably certain that autonomic responses are ap-
propriate. In many cases, it is difficult to formally verify
appropriate responses because of the complexity of the al-

gorithms involved in making autonomic decisions. Fault
injection techniques have been developed to raise the confi-
dence level in distributed systems.

One class of fault injection uses the message commu-
nication system to insert faults. Examples of such sys-
tems are ORCHESTRA [9] and FIONA (Fault Injector Ori-
ented to Network Applications) [13]. The former is a local
fault injector that inserts a protocol layer which filters mes-
sages between components in a distributed system. Every
node in the system runs an independent instance of the tool.
The latter is a distributed tool that alters the flow of UDP
(User Datagram Protocol) messages in Java programs, and
takes advantage of the underlying communication layer (OS
layer) to coordinate an experiment to test a set of nodes.
Both tools lack a broad fault model and also the ability to
define precise triggers based on application state.

Another class of fault injection uses the operating in-
frastructure of a node. For example, NFTAPE (Network
Fault Tolerance and Performance Evaluator) [18] presents
a generic way to inject faults by writing a test script which
can be used to inject faults on a remote node. Its design
facilitates the injection of faults externally to the applica-
tion (for example, through the operating system), making it
more difficult to inject faults based on the application state.
With NFTAPE, it is possible to use the processor breakpoint
registers to define addresses at which faults will be injected.
Loki [7] allows fault injection in multiple nodes based on a
partial view of the application global state. The drawback of
this approach is that the application has to be explicitly in-
strumented with state notifications and fault injection code.
Also, a state machine must be defined to describe the dis-
tributed system and the global state in which the fault will
be injected. Such tasks get more complicated when the sys-
tem runs in a heterogeneous environment, where there is
no guarantee concerning the language in which the applica-
tions are implemented and which state each of these pieces
will be at each time interval. Multi-threaded applications
where each thread has its own state may also cause prob-
lems when defining a state for a single process.

Building upon the related work cited above, the problem
we address is self-recovery of the JMN orchestrator and the
validation of the recovery technique.

3. Job Management Overview

This paper focuses on fault recovery of the job manage-
ment component. The job management (JMN) framework
is built around a highly modular “pluggable” design, simi-
lar in spirit to the Eclipse architecture [5]. During bootstrap
the JMN framework initializes basic logging, network, and
configuration services. The plugin manager is then invoked
to dynamically load the pluggable functions which allow
the JMN process to do useful work. Pluggable components

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

provide all of the key features of JMN such as the external
API, network protocols, persistence, system interfaces (e.g.
to OPT, SPC, DGM, and so on), time services, security, and
resource management.

Different pluggable functions are loaded into the frame-
work to provide the following JMN processes:

• The central orchestrator, which provides traditional job
management functions, fielding job submission and
control, orchestration job life-cycles, persistence of job
related information into the JMN database, and provid-
ing interfaces to most of the rest of the system. There
is generally a single orchestrator in the system.

• The master node controller (MNC). The MNC runs on
every node on which PEs are to be started. The MNC
receives, executes, and manages start, stop, and var-
ious administrative orders from the orchestrator and
provides the primary interfaces to the stream process-
ing core (SPC).

• The resource manager, or RMN. The resource manager
provides resource manager functions such as resource
discovery, monitoring, and management.

The primary control mechanism of the job manager’s or-
chestrator is the Finite State Machine (FSM) engine. The
FSM engine itself does not define any automata. Rather, it
provides a framework upon which automata may be defined
and managed. It is possible to define automata consistent
with Moore, Meally, and hybrid FSM models.

Specific FSM implementations are defined externally via
an XML document. The FSM Engine reads the document
and constructs a specific instance of FSM from it. It is pos-
sible to construct and operate multiple, disparate FSM in-
stances within the same process, and it is possible to assign
different FSM instances to different jobs in the system if
it is determined their life-cycles are different (for example,
the life-cycle of a streaming job may be different from a
non-streaming job).

Implementation of states and actions are done via the
system’s plug-in mechanism. An FSM instance consists of
a collection of states. Figure 2 shows a portion of a FSM
definition which specifies a single state called optimizing.
A state consists of a collection of transitions. A transition
consists of a number of methods. When a transition is trig-
gered, each of the methods associated with it is executed in
turn. When the last method returns, the state is advanced
to the next state specified by the transition. It is possible to
associate no methods with a transition, in which case state
advances with no associated action. Each method specifies
an object, which may be a plug-in, and a method on that
object to execute. The methods must implement a specific
interface which provides context for the execution of the
method. Note also the ability to add arbitrary annotations

to a state. These annotations may be queried by specific
automata as needed. In the example we show the updat-
edb property which our FSM uses to determine whether the
act of transitioning to this state should be persisted in the
checkpoint database.

<state id="optimizing" number="5">
<property name="updatedb" value="false"/>

<transition id="optim" nextState="dgm-inst">
<method object="fsmimpl" name="dgmInst" />

</transition>

<transition id="cancel" nextState="cleanup">
<method object="fsmimpl" name="dgmUnmap" />
<method object="fsmimpl" name="qCancel" />

</transition>

<transition id="error" nextState="cleanup">
<method object="fsmimpl" name="dgmUnmap" />
<method object="fsmimpl" name="qToCancel" />

</transition>

<transition id="recover" nextState="dgm-inst">
</transition>

</state>

Figure 2. Subset of Finite State Machine Def-
inition

Because the FSM definition is externalized, it is ex-
tremely easy to alter FSM behavior without code changes.
This mechanism makes it possible to easily build the State-
based Fault Injection system described in Section 5 that can
be used to validate that the system is able to self-heal under
a variety of error conditions.

4. Job Manager Orchestrator Recovery

As mentioned in Sections 1 and 3, the orchestrator is
a central component of the system–all job submission and
management flows through it. Hence it is also a single point
of failure: a crash makes the system unavailable for submis-
sion of new work and management of existing work. How-
ever, since the system is distributed, failure of the orches-
trator does not imply total system failure. If the system can
self-heal by starting a new orchestrator and synchronizing
its state with the nodes, it is possible for the rest of the sys-
tem to be left unperturbed with no existing work lost. To
accomplish this, we must implement a recovery technique
which brings the orchestrator to a state consistent with all
the components of the system. Such recovery techniques
must also consider all state transitions of the distributed
components which occurred during the outage, including
their possible failure.

This section presents the fault model considered, the
check-pointing techniques used and how the job manager
orchestrator reconciles with the other components in the
system.

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

4.1 Fault Model

The fault model considered includes failure of the or-
chestrator due to a physical node failure, crash of its pro-
cess, or link failure (the node running orchestrator loses its
network connection). While the recovery techniques could
also be used for planned outages or migrations of the or-
chestrator, planned outages and migrations are more effi-
cient using a controlled process not discussed in this paper.

Overall, our recovery approach is most closely aligned
with the mixed-level checkpointing (MLC) [6] technique.
Each individual PE is responsible for application level
checkpointing (ALC) of its own state, while the JMN is
responsible for system-level checkpointing (SLC) of each
individual job’s state (e.g., the collective state of a group of
related PEs). We limit our discussion below to SLC and
recovery.

4.2 State Check-pointing

As stated in Section 3, the job management architecture
is a pure plug-in-based architecture with all useful functions
implemented as plug-ins. Most of the plug-ins are stateless
and thus do not need any recovery action. In fact, the only
state that has to be maintained between JMN executions is
the state of the jobs running in the system.

When a fault occurs, a job may be in any of the states de-
fined by the externalized FSM description. Further events
that trigger job state transitions could also occur at any time.
A job state is dependent not only upon the state of the or-
chestrator itself, but also upon all the nodes that have PEs
executing for that job. To save the state of each job, we use
persistent objects, propagating the job state and its identifi-
cation to a database. The state of each component of the job
is inserted in the database using the Hibernate service [3].

While job persistence could be triggered every time there
is a job state transition to maintain the most up to date state,
persistence of states is performed selectively via the anno-
tation mechanism described in Section 3. One reason for
selective updates is the negative performance impact if we
persist the updates generated by all the jobs in the system
and all their distributed PEs. The second reason is that in-
dividual job state is dependent on the distributed state of its
individual PEs. State change in an individual PE may not
require a job state update, so job state is (re)persisted only
when the collected state of its PEs indicates such an up-
date. Hence, the state of the database when failure occurs
may not reflect the actual state of the distributed system. In
addition, individual PE states may change during the fail-
ure and recovery. Therefore, it is necessary to perform a
reconciliation step after JMN orchestrator failure using the
database state as a starting point to recover each job. Dif-
ferent reconciliation procedures are used for each job (for

example, undo/redo or state forwarding), depending on the
state of the job at the time of the failure.

Figure 3 shows a simplified state diagram of a job. When
a job is submitted to the system, its data are persisted to the
database and the job state transitions to the parsing state
where the job description is interpreted. Until the job state
arrives at the mapping state, only the orchestrator is aware
of the job. In the mapping state, the orchestrator requests
the Dataflow Graph Manager (DGM) to map the potential
streaming connections among PEs. The job state then tran-
sitions to the optimizing state, where node placement deci-
sions are made, and then to the instantiating state, where
DGM is contacted once more to inform it of the node as-
signments for the PEs. In the dispatching state, the orches-
trator contacts each of the nodes assigned to the job to begin
execution of the PEs. From this point, the job state is de-
pendent on the collective distributed state of the PEs. When
all PEs have started, the job state transitions to the running
state. After the PEs are finished, the job completes. By an-
alyzing the impact of a fault in each state, it was determined
that the states submitted, mapping, dispatching, canceling
and running should be persisted to the database. The states
were selected based on which states could lead JMN to an
incosistency in case of a failure. If data can be recovered
from other components of the system, we only save the first
time the state changes on JMN. For example, if the job was
in running state and receives a notification of a PE exit, the
job will still be in running state waiting for other PEs to
finish, and, therefore, will not persist such transition again.
States that do not interfere with other components and can
be repeated internally to JMN are not saved.

submitted parsing

instantiating

mapping

optimizingdispatching

running canceling complete

Figure 3. Job state machine

It is important to notice that if a job misses a PE state

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

transition, the FSM may stall. The MNCs normally com-
municate with the orchestrator through asynchronous status
update reports. If the orchestrator fails, the MNCs detect
message failure and keep these messages on a FIFO list
for timed retransmission. During recovery, the orchestra-
tor’s communication mechanisms are fully functional, but
the status listener returns error status to any such messages
that arrive, which insures they remained enqueued in the
MNC’s retry lists. Once the orchestrator is able to process
the messages it removes the block from the status listener
and after at most one retry cycle all nodes will have been
able to report all pending status, (in the correct order).

4.3 Recovery Plug-in

Consistent with the JMN architecture, the recovery mod-
ule is implemented as a plug-in which is loaded when JMN
is restarted after a crash/shutdown. The overall recovery
process is:

1 query database for uncompleted jobs,

2 synchronize valid job state with DGM state if needed,

3 perform recovery action based on job state,

4 schedule a thread to finalize the recovery process (see
Section 4.4).

The reconciliation process takes place in phases 2 and 3,
when the orchestrator contacts other processes to reach a
consistent state.

As mentioned in the previous section, the database is
used as the starting point for orchestrator recovery. The
management representation of all of the uncompleted jobs
in the system is restored from the checkpoint and their ob-
ject instances in the orchestrator are recreated. We enumer-
ate the steps for recovering depending on the persisted states
of submitted, mapping, dispatching, canceling and running.
Recovering when the persisted state is submitted

The first possible recovered persisted state is submitted.
If the checkpoint indicates the job is in such a state, it means
that the job could have already advanced to the parsing state
before the failure as seen in Figure 3 (the canceling state
and mapping state are not possible because they would have
been persisted). Since the parsing state and submitted state
do not depend on any distributed component, the recovery
process can safely reset the job state to submitted so that the
submission can be restarted.
Recovering when the persisted state is mapping

The second job state that can be recovered from the
database is mapping. From the mapping state, the only
possible un-persisted transitions before a failure are the op-
timizing and instantiating states (canceling and dispatch-
ing would have been persisted). Transition to the mapping

state triggers an interaction with the DGM that advances
the DGM’s state. Completion of that interaction with DGM
triggers a transition to the optimizing state which causes
and interaction with OPT. During recovery, if a query of
the DGM reveals that it does not have state for a job, then
the job state can safely be returned to mapping to attempt
the mapping operation with the DGM again. If instead
the DGM has state for the job, then it is not possible to
tell whether the mapping completed and the state was ad-
vanced to optimizing or instantiating before the failure or
if the mapping did not complete. In either case, the avail-
able resources and PEs may have changed during the failure
causing the map to no longer be valid. Since nothing has ac-
tually been dispatched and it is relatively cheap to start over
in these cases, we clear the state from the DGM by calling
unmap and then return the state of the job to mapping to
trigger a new map with the DGM.

Recovering when the persisted state is dispatching

The next job state that can be recovered from the
database is dispatching. If the job is in the dispatching state,
it means that the orchestrator may or may not have made the
requests to start each of the PEs on each of the nodes. The
MNCs queue state transition messages while the orchestra-
tor is unavailable. To recover, the orchestrator queries the
MNCs and collects all of the messages that the MNC has
queued as well as the last successful MNC state updates for
each PE. If any PE of a job has a non-started status, the job
resumes the dispatching steps. If all PEs are started, the job
may move forward to the running state.

Recovering when the persisted state is running

If the last persisted state of a job was the running state,
some or all of the PEs may have completed during the fail-
ure or recovery process. To recover in this case, the orches-
trator has to contact the nodes to get their latest informa-
tion about the PEs in the job. After the orchestrator gets all
the responses, it can update the state of the job accordingly
(keep it in running state if there are some PEs running or
transition to complete state). If a PE is not known by its
recorded MNC, it means that the PE has completed or the
MNC has also failed during the orchestrator failure. In that
case, the corresponding PE is marked as completed, and the
job state advances depending on the state of all its PEs.

Recovering when the persisted state is canceling

If the persisted state of the job is canceling, some or all
of the PEs may have completed during the failure as in the
persisted running state. In that case, the nodes have to be
queried to determine the current state of the constituent PEs
so the job can be recovered as completed or held in the
canceling state. As with the running state, if a PE is not
known by its recorded MNC, then the PE has completed or
the MNC has failed and restated. In either case, the PE is
treated as complete and the job state advances accordingly.

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Figure 4 shows the overall view of the recovery recon-
ciliation process. During phase 1, the orchestrator queries
the checkpoint database. After that, it reconciles with the
DGM (phase 2) and recovers the jobs that were in submit-
ted and mapping state. After these two phases, the orches-
trator has information about all jobs in the system, but it
may still have some inconsistencies. The figure shows Job
1 with two PEs started, and Job 2 with one PE started and
another one not started. In phase 3, the orchestrator queries
the MNCs about the last state of the constituent PEs and
updates the job’s overall state. After phase 3 the PE states
are updated, one being completed and the other completed
with exception. After finishing this phase, the orchestrator
is consistent with all the components of the system and can
start to operate normally (e.g., receiving new requests).

Figure 4. Recovery reconciliation process

4.4 Handling multiple failures

The JMN orchestrator depends on four remote entities
to recover successfully: PEs, MNCs, a database manager
system (DBMS) and the DGM. While the orchestrator is
not running, any of those components may also have failed.

When a PE fails, the MNC detects it and report its status
as “exception”. This is handled via a state transition. The
orchestrator may take further actions, such as moving the
PE to another node, determined by system policy.

A node can fail in two situations of interest: before or-
chestrator failure/recovery and during orchestrator recov-
ery. If failure occurs before the orchestrator begins its re-
covery it will be detected when communication to the node
fails. If the node fails during the recovery process, the
orchestrator may wait indefinitely for the response to the
query of the PEs statuses. To successfully recover under
this situation, the orchestrator schedules a thread that times
out if a node is unresponsive (phase 4 in Figure 4). If the
node is determined to have failed because of a timeout, the

orchestrator treats this as a PE failure and applies system
policy to the job to determine the recovery strategy (e.g.
cancel the job, restart the PE elsewhere, etc.).

The orchestrator relies on the DBMS for checkpoint
availability and integrity. If the DBMS fails, the orchestra-
tor relies on the fault tolerance mechanisms of the DBMS
itself. Similarly, the DGM has its own fault tolerance mech-
anism. Note, however, that the orchestrator can not operate
without the DBMS or DGM, so any orchestrator recovery
strategy may require waiting for recovery of these processes
before its own recovery can begin.

5. Recovery Validation

As a means to validate the orchestrator recovery mecha-
nism to obtain the high availability requirements, we need
techniques to evaluate the recovery time and assure that the
mechanism developed can diagnose and react to faults cor-
rectly. The ability of the system to survive under various
abnormal behaviors of all the participating components dis-
tributed across a network of nodes is a challenge. In this
section we present the fault injection tool developed to help
validate the JMN orchestrator recovery approach. The tech-
nique can also be used to validate other recovery mecha-
nisms within System-S, as well as any distributed system
controlled by an externalized finite state machine.

As mentioned in Section 3, JMN performs scheduling
and dispatching of jobs based on an externalized finite state
machine (FSM), which can be expressed using a mark-up
language, such as XML (Extensible Markup Language).
Our fault injection tool FSM Fault Injector (FSMFI) lever-
ages the fact that the FSM in the JMN framework is exter-
nalized by augmenting the FSM definition with the faults.
This approach permits the test engineer to inject errors
based on the system state and also facilitates injection of er-
rors in other nodes of the distributed system. The advantage
of such a tool is that it can precisely exercise a distributed
system under a variety of faulty conditions. Since each fault
injection occurs explicitly in system states, testing can be
more targeted with greater confidence in the test coverage.

To ensure that the operational FSM does not have errors
introduced by fault injection, the test engineer creates a fault
injection test (FIT) document which defines a fault injection
campaign in a standardized format (e.g., XML document)
and specifies the states and the transitions in which the fault
injection will take place. The faulty behavior can be chosen
from a fault injection library or defined by the tester. After
the definition of the FIT document, the FSMFI tool creates
an augmented FSM description that is modified with fault
injection annotations. The modified FSM is loaded and the
FSM Engine calls the fault injection methods when appro-
priate. Using this technique the tester can easily add, re-
move and change faulty behavior without making changes

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

original

FSM

definition

fault

injection

library

description

FSM

transformation

engine

modified

FSM

definition
Automatic

fault injection

test generator

fault

injection

test

fault

injection

test

fault

injection

test

fault

injection

test

modified

FSM

definition

modified

FSM

definition

modified

FSM

definition

modified

FSM

definition

fault

injection

test

Figure 5. Automatic fault injection test gener-
ation

to the application. Figure 5 demonstrates how the original
FSM description of the distributed application and the fault
injection library description are used as input for a auto-
matic fault injection test generator. The output is a collec-
tion of FIT documents which describe the various fault in-
jection tests. These FIT documents are used as input, along
with the FSM description, to a FSM transformation engine,
which generates a modified FSM definition.

The FIT language for specifying the fault injection test
is comprised of a description of the faults to be injected as
well as information that implies a modification directly to
the FSM and information related to the configuration of the
fault injection library (e.g., time trigger). It is described in
a standardized format according to a fault injection schema.
The implementation of fault injection methods, which emu-
late the faulty behavior desired by the tester, may be through
the use of pre-implemented methods from a fault injection
library or plug-in. These fault-providing methods may ac-
cept runtime configuration options described in the fault in-
jection test XML document. In our prototype, the library is
implemented as a fault injection plug-in.

Figure 6 shows an example of a fault injection cam-
paign description. It shows both runtime options, used by
the fault injection library, and offline options used by the
FSM transformation engine. In this example, the faulty
behavior is implemented by the method peCrash in the
jmn.util.fi.FaultInjection class. The target of
the fault injection is a subtask (FilterTask.out) exe-
cuting in machine30. The trigger is based on the state of
a job and optionally also by a timer. Here the fault is trig-
gered when the job is in the running state and it makes a
peStatusUpdate transition. Since there is also a timer
configuration, the fault is injected at a random time between
0 and 4000 milliseconds after the transition is taken.

Figure 7 shows how the FSM description is modified by
a configuration as shown in Figure 6. Originally, when a job
is in the running state and makes a peStatusUpdate
transition, it executes in sequence method1, method2
and method3. After processing the original FSM with the
fault injection description, the new FSM is generated with
the fault injection method inserted in the state transition.
During the scheduler execution, when such a transition is
taken, it will invoke the fault injection method and, in this

<faultInjection>

<target id=“pe” peId=“sink” executableName=“FilterTask.out”>

<node>machine30</node>

<trigger>

<timer min=“0” max=“4000”/>

<jobNumber>10</jobNumber>

<peNumber>2</peNumber>

</trigger>

<state>running</state>

<transition>peStatusUpdate</transition>

<injectionClass>jmn.util.fi.FaultInjection</injectionClass>

<injectionMethod>peCrash</injectionMethod>

</target>

</faultInjection>

} offline

} runtime

Figure 6. Fault injection campaign descrip-
tion

running running

running

 peStatusUpdate

 method1

 method2

 method3

peStatusUpdate

running

 peStatusUpdate

 peCrash

 method1

 method2

 method3

Fault injection

campaign XML+ =

running running

peStatusUpdate

Figure 7. FSM description modified for a fault
injection experiment

case, inject a PE crash fault, according to the configuration
passed to the fault injection plug-in.

Using the FSMFI mechanism, tests of the JMN or-
chestrator recovery mechanism can be automatically con-
structed from the original externalized FSM and the fault
injection library. While the approach requires use of an ex-
ternalized FSM, we believe that the benefits for validation
such as granularity and repeatability are compelling. In the
next section we show how recovery was validated for some
states using the FSMFI technique.

6. Results and Experiments

This section describes qualitative experiments with the
orchestrator recovery technique driven by different kinds of
fault injection techniques. We also show the relative perfor-
mance of the recovery technique versus restarting the appli-
cations if the orchestrator fails.

The experiments were conducted with System-S running
on several Linux nodes. One node was running the JMN
orchestrator, another one was dedicated to the DGM. All
nodes were running MNCs and executing PEs. To reduce
complexity, a random placement mechanism was used in-
stead of the optimizer. The check-pointing database was
running on the same node as the orchestrator and the DBMS
used was HSQLDB (http://hsqldb.org).

For all experiments, the System-S infrastructure is first

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

started on all nodes. After the orchestrator, DGM, and all
MNCs are running, jobs are submitted to the system. For
each of the experiments, under different conditions, a crash
fault is injected into the orchestrator. After the orchestrator
crashes, it is restarted in recovery mode. In the first experi-
ment, the crash of the orchestrator occurs when the system
is in steady state, while in the second experiment the crash
occurs in the middle of a job dispatch.

6.1 Crash in a Steady State

This first experiment shows the recovery of the orches-
trator while in a steady state. Steady state here means that
no jobs are being submitted to the system during the time of
crash and all the jobs already in the system are in running
state, so no new transitions related to job start are being sent
to the orchestrator. We submitted multiple jobs, each con-
taining 31 PEs, out of which there was one source PE and
13 sink PEs. The placement of the PE’s is chosen at random
by the system after job submission. Another test with a set
of 104 jobs containing a total of 737 PEs was also carried
out. These jobs have some PEs that are shared among mul-
tiple jobs and also have stream connections between PEs of
different jobs. This test set is used because it more closely
represents real world systems (RWS).

The experiment begins by starting up the system and sub-
mitting a specific number of jobs. We then introduce a crash
by causing the JMN orchestrator to abruptly stop when all
the jobs are running in the system. The crash is introduced
using the FSM based fault-injection technique described in
the previous section . The PEs continue to run in spite of
the orchestrator crash, but no new jobs can enter the system
and the jobs that are running cannot be cancelled.

After the JMN orchestrator crashes, it is restarted in re-
covery mode. We observed that during the recovery it suc-
cessfully contacts all MNCs. It also updated the state of all
the jobs and the PEs according to the state saved and re-
ported by each MNC. After the recovery is complete, new
jobs can be submitted and further updates for existing jobs
can be processed normally.

The above process of crashing and restarting JMN or-
chestrator is carried out multiple times. Time to recover
in each case is noted. Another set of tests are carried out
where we start up the system and submit jobs. We then can-
cel the jobs and re-submit them. The time it takes in each
case from the moment each job is submitted till the last job
enters running state is noted.

6.2 Crash while Dispatching a Job

The second experiment shows that the orchestrator is
able to recover when a job is in the dispatching state. In

this experiment 3 jobs were submitted, where one had 9 PEs
and the other two had 32 PEs.

The state-based fault injection technique was used to
modify the FSM dispatching state so that the FSM engine
invokes the crashJmn method while it is dispatching the
third job after half of its PEs are dispatched.

During the recovery, the orchestrator detects that one of
the jobs is still in dispatching state, so it tries to finish the
dispatch. The orchestrator reports that the job successfully
completes the dispatch and the orchestrator is ready to re-
ceive new job requests.

6.3 Experimental Results

We have described the experiments in which the recov-
ery process is confirmed for faults when the system is in
steady state and when the system is in the middle of dis-
patching a job. We have also described that recovering from
failure autonomically with minimal interruption to applica-
tions is critical for stream processing systems. In this sub-
section we show the performance of recovery is also favor-
able compared to restarting the applications from scratch.

Test # # of nodes # of PEs secs. to secs. to
start jobs recover

1 10 31 2.0 7.6
2 10 310 9.1 8.8
3 30 310 9.1 8.0
4 30 930 26.3 15.1
5 90 930 33.9 16.2
6(RWS) 90 737 27.0 15.4

Figure 8. Job Submission vs. Recover Times
(Steady State Crash)

Figure 9. Comparison of Job Start versus Re-
covery Times (Steady State Crash)

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Notes:

1. Seconds to startup jobs only includes time since the
first job was submitted until all jobs were running.

2. Seconds to recover includes only orchestrator boot
time plus time needed to recover all PEs as running.

3. For each node and PE number combination shown
above, the experiment was conducted 10 times. Av-
erage times are shown.

The table and chart shows that for very small number of
PEs, the recovery time is more than the start time. How-
ever as the number of PEs in the system goes up, the recov-
ery time increases very slowly as compared to job startup
times.

7. Conclusions and Future Work

This paper has described the self-healing capabilities of
a key component of the System-S infrastructure and pre-
sented techniques for validating the recovery mechanism.
One important contribution is the realization that persis-
tence overhead could be reduced in System-S by persisting
a subset of the state transitions in the lifecycle of a job and
rolling back the work to an appropriate state, redoing a tran-
sition, or advancing to an appropriate state depending on
the state recovered and environmental conditions. Also, the
checkpointing scheme on JMN and MNCs do not require
synchronization. Therefore, when the recovery takes place,
there is no concern with reaching strong consistency be-
tween the distributed components. Another important con-
tribution is the description of the externalized FSM which
can make it easy to programmatically inject faults that are
dependent on the state of an application. We have described
two qualitative experiments that show the job manager or-
chestrator can recover under a variety of conditions. We
have also explained why it is important to recover streaming
applications without interrupting them and by experimental
analysis have shown that recovery is in general faster than
restarting the system and applications from scratch. Future
work includes the conduction of comprehensive fault injec-
tion tests, evaluating the resilience of JMN to other fault
models (e.g. bit flips) and fault propagation behavior.

References

[1] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure.
Adaptive control of extreme-scale stream processing sys-
tems. In ICDCS ’06: Proceedings of the 26th IEEE In-
ternational Conference on Distributed Computing Systems,
page 71, Washington, DC, USA, 2006.

[2] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stone-
braker. Fault-tolerance in the Borealis distributed stream
processing system. In Proc. of ACM SIGMOD ’05, pages
13–24, New York, NY, USA, 2005.

[3] C. Bauer and G. King. Hibernate in Action. Manning Pub-
lications, New York, NY, 2005.

[4] A. Bohra, I. Neamtiu, and F. Sultan. Remote repair of op-
erating system state using backdoors. In Proc. of ICAC ’04,
pages 256–263, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[5] A. Bolour. Notes on the eclipse plug-in archi-
tecture. http://www.eclipse.org/articles/Article-Plug-in-
architecture/plugin architecture.html.

[6] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and
P. Stodghill. Recent advances in checkpoint/recovery sys-
tems. In Workshop on NSF Next Generation Software, 2006.

[7] R. Chandra, R. M. Lefever, K. R. Joshi, M. Cukier, and
W. H. Sanders. A global-state-triggered fault injector for
distributed system evaluation. IEEE Transactions on Paral-
lel and Distributed Systems, 15(7):593–605, July 2004.

[8] B. F. Cooper and K. Schwan. Distributed stream manage-
ment using utility-driven self-adaptive middleware. In Proc.
of ICAC ’05, pages 3–14, Washington, DC, USA, 2005.

[9] S. Dawson, F. Jahanian, and T. Mitton. ORCHESTRA: A
probing and fault injection environment for testing protocol
implementations. In Proc. of IPDS’96, Urbana-Champaign,
IL, 1996.

[10] F. Douglis, M. Branson, K. Hildrum, B. Rong, and F. Ye.
Multi-site cooperative data stream analysis. SIGOPS Oper.
Syst. Rev., 40(3):31–37, 2006.

[11] Y. Etsion and D. Tsafrir. A short survey of commercial batch
schedulers. Technical Report 13, May 2005.

[12] J. G. Hansen, E. Christiansen, and E. Jul. The laundromat
model for autonomic cluster computing. In Proc. of ICAC
’06, pages 114–123, June 2006.

[13] G. Jacques-Silva, R. J. Drebes, J. Gerchman, J. M. F.
Trindade, T. S. Weber, and I. Jansch-Pôrto. A network-level
distributed fault injector for experimental validation of de-
pendable distributed systems. In Proc. of COMPSAC ’06,
pages 421–428, Chicago, IL, USA, 2006.

[14] N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and
C. Venkatramani. Design, implementation, and evaluation
of the linear road benchmark on the stream processing core.
In Proc. of ACM SIGMOD ’06, pages 431–442, New York,
NY, USA, 2006. ACM Press.

[15] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, January 2003.

[16] H.-H. S. Lee, G. Gu, and T. N. Mudge. An intrusion-tolerant
and self-recoverable network service system using a security
enhanced chip multiprocessor. In Proc. of ICAC ’05, pages
263–273, Washington, DC, USA, 2005.

[17] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor–a
hunter of idle workstations. In Distributed Computing Sys-
tems, 1988., 8th International Conference on, pages 104–
111, 1988.

[18] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. K.
Iyer. NFTAPE: A framework for assessing dependability
in distributed systems with lightweight fault injectors. In
Proc. of the IEEE IPDS 2000, pages 91–100, Chicago, USA,
March 2000.

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

