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Abstract

Despite previous efforts in auditing software manually
and automatically, buffer overruns are still being discov-
ered in programs in use. A dynamic bounds checker de-
tects buffer overruns in erroneous software before it oc-
curs and thereby prevents attacks from corrupting the in-
tegrity of the system.

Dynamic buffer overrun detectors have not been
adopted widely because they either (1) cannot guard
against all buffer overrun attacks, (2) break existing code,
or (3) incur too high an overhead. This paper presents
a practical detector called CRED (C Range Error Detec-
tor) that avoids each of these deficiencies. CRED finds all
buffer overrun attacks as it directly checks for the bounds
of memory accesses. Unlike the original referent-object
based bounds-checking technique, CRED does not break
existing code because it uses a novel solution to support
program manipulation of out-of-bounds addresses. Fi-
nally, by restricting the bounds checks to strings in a pro-
gram, CRED’s overhead is greatly reduced without sacri-
ficing protection in the experiments we performed.

CRED is implemented as an extension of the GNU
C compiler version 3.3.1. The simplicity of our design
makes possible a robust implementation that has been
tested on over 20 open-source programs, comprising over
1.2 million lines of C code. CRED proved effective in de-
tecting buffer overrun attacks on programs with known
vulnerabilities, and is the only tool found to guard against
a testbed of 20 different buffer overflow attacks[34]. Find-
ing overruns only on strings impose an overhead of less
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than 26% for 14 of the programs, and an overhead of up
to 130% for the remaining six, while the previous state-of-
the-art bounds checker by Jones and Kelly breaks 60% of
the programs and is 12 times slower. Incorporating well-
known techniques for optimizing bounds checking into
CRED could lead to further performance improvements.

1. Introduction

Buffer overflows are the most common form of secu-
rity threat in software systems today, and vulnerabilities
attributed to buffer overflows have consistently dominated
CERT advisories[7]. In the year 2002, 57% of security ad-
visories for the year were related to buffer overflow vul-
nerabilities. As of August 2003, 50% of the security advi-
sories issued for the year fell under this category. In addi-
tion, 50% of the 60 most severe vulnerabilities as posted
on CERT/CC were caused by buffer overflow errors in
programs[8]. A similar pattern is also observable in vul-
nerabilities listings posted on computer security websites,
such as SecurityFocus[27] and Securiteam[26]. Computer
worms such as Slammer, CodeRed, and more recently,
Blaster and Welchia have exploited buffer overflow vul-
nerabilities in programs to inflict billions of dollars worth
of damages on the computing community. An effective
solution to buffer overruns will have a significant impact
in improving the security of our computing systems.

1.1. Background

In a buffer-overflow attack on a vulnerable program,
the attacker attempts to modify the memory state of the
program so that it yields control of the machine to the at-
tacker in the privilege mode of the program. To launch an
attack, the attacker would supply carefully-crafted excess
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input data to the program. A program that does not check
if the input exceeds its memory buffer size would copy the
excess data into locations adjacent to the buffer. By con-
trolling the contents, the attacker can cause the program
to deviate from its intended purpose.

A classic and simple example of such an attack, known
as stack smashing[1], simply overwrites the return ad-
dress of a function on the stack so that, when the func-
tion returns, control jumps to a location where the attacker
would have inserted malicious code. Other more complex
variants attempt to modify locations referenced by func-
tion pointers and the global offset table.

Although the buffer overrun problem surfaced many
years ago, a practical solution has eluded the software
community despite efforts in code auditing and devel-
opment of static and dynamic buffer overflow detectors.
Static buffer overflow detectors attempt to verify that all
memory accesses are checked for overruns[11, 22, 31].
The problem, unfortunately, is undecidable in general.
Sound tools tend to generate too many false warnings and
unsound tools can miss errors in the code. Moreover,
warnings generated by the analysis tools require that pro-
grammers manually inspect the code and insert in the ap-
propriate checks. These weaknesses render static buffer
overflow detectors impractical.

Dynamic buffer overflow detectors are attractive be-
cause they automatically insert the necessary guards.
However, for a dynamic detector to be deployed: it
must (1) protect against all buffer overflow attacks, (2)
not break working code, and (3) be reasonably efficient.
There are no buffer overflow detectors proposed to date
that satisfy all these requirements.

Some dynamic buffer overflow detectors do not of-
fer complete protection against buffer overflow attacks;
tools such as StackGuard[10], StackShield[30], and
Propolice[12] attempt to guard against only stack smash-
ing. Bounds checkers detect any bounds violations in pro-
gram execution and hence guard against all buffer over-
flow attacks. Some bounds checkers modify the repre-
sentation of C pointers[9, 17, 19]. They replace each
pointer in the program with a structure that holds infor-
mation needed for bounds checking, such as the base and
extent address of the buffer referenced by the pointer. Not
only does such modification increase memory storage sig-
nificantly, it is incompatible with legacy code.

The bounds checker proposed by Jones and Kelly is
particularly attractive in that no pointer representation
modifications are necessary[18]. They define therefer-
ent objectof a pointer to be the program buffer that the
pointer is intended to reference. They observe that the re-
sult of a pointer arithmetic operation must have the same

referent object as the original pointer. Thus, given an in-
bounds pointer, and the ability to retrieve the base and ex-
tent of the referent object, the checker can determine if the
computed address is in-bounds. However, their approach
cannot handle the case where an out-of-bounds pointer to
an object is stored and later retrieved to compute an in-
bounds address. This weakness causes the tool to gener-
ate false alarms on many existing programs. Furthermore
this tool imposes significant runtime overhead because all
non copy pointer operations are instrumented.

1.2. Contributions

This paper presents a practical dynamic buffer overrun
detector called CRED (C Range Error Detector). CRED
enforces a relaxed standard of correctness by allowing
program manipulations of out-of-bounds addresses (a vio-
lation of the ANSI C standard) that do not result in buffer
overflows. The idea is to replace every out-of-bounds
pointer value with the address of a special OOB (out-of-
bounds) object created for that value. Kept with the OOB
object is the actual pointer value and information on the
referent object. The OOB addresses can be copied around
arbitrarily, just like any other data. When the value is used
as an address, however, it is replaced by the actual out-of-
bounds address. Any pointer derived from the address is
bounds checked before it can be dereferenced. Our design
supports the relatively rare out-of-bounds address manip-
ulation, without increasing the overhead for the common
case. Also, it minimizes the space overhead by reclaiming
storage associated with deallocated pointers, ensuring that
no memory is leaked. In addition, CRED exploits type in-
formation to minimize run-time overhead by restricting
checks to only accesses that present security risks.

We have implemented our idea on top of Jones and
Kelly’s extension to the GNU C compiler version 3.3.1.
We tested our implementation extensively by running it on
20 open-source programs, which together comprise over
1.2 million lines of code. Unlike Jones and Kelly’s im-
plementation, which failed on 60% of the programs, code
generated by our compiler passed all the test suites. Our
system is also shown to be effective in detecting buffer
overflows. It is the only tool reported so far to be ef-
fective against a testbed of 20 different buffer overflow
attacks[34]. Our optimizations impose an overhead of less
than 26% for 14 of the programs, and an overhead of up
to 130% for the remaining six, while the previous state-
of-the-art tool by Jones and Kelly runs 12 times slower.

This research shows that it is feasible to build a simple,
robust, and compatible C bounds checker that can guard
against all buffer overruns. The performance of our sys-
tem can be further improved by applying known compiler



optimization techniques.

1.3. Paper Organization

We present the bounds-checking technique based on
referent objects in Section 2, discuss its deficiency, and
describe our proposed solution. We then discuss an op-
timization in Section 3. Section 4 presents experimental
results of applying CRED to commonly used software ap-
plications. In Section 5, we review other approaches to
tackling the buffer overflow problem. Section 6 presents
our conclusion and future work.

2. Bounds Checking Using Referent Objects

To check the bounds of a pointer, we need to determine
its referent object, and then check if the pointer is within
bounds. Because C is not type safe, allows arbitrary ad-
dress calculations, and allows pointers to point to the mid-
dle of an object, it is not easy to determine the referent
object of a pointer.

The referent-object based approach proposed by Jones
and Kelly[18] is based on the principle that an address
computed from an in-bounds pointer must share the same
referent object as the original pointer.

Their scheme uses anobject table, a run-time data
structure that collects all the base address and size in-
formation of all static, heap and stack objects. To deter-
mine if an address computed off an in-bounds pointer is
in-bounds, the checker first locates the referent object by
comparing the in-bounds pointer with the base and size in-
formation stored in the object table. Then, it checks if the
new address falls within the extent of the referent object.

The object table is implemented as a splay tree[29] to
optimize the pointer lookups. The size of the object table
is relatively small because it is linear with respect to the
number of objects, and not the number of pointers, during
program execution.

Jones and Kelly’s tool was implemented as a run-time
library of checking routines. They modified the front end
of gcc so that all object creation, address manipulations
and dereference operations are intercepted and replaced
with calls to appropriate routines in the checking library.
These calls make sure that the object table is kept up to
date and that all the addresses generated and dereferenced
are within bounds. In addition, the tool provides a bounds-
checked version of each of the unsafe standard C library
routines that have been instrumental to successful exploits
of vulnerable programs.

An important advantage of Jones and Kelly’s approach
is that code instrumented with their tool is compati-
ble with uninstrumented code, such as linked libraries.

Clearly, since the representation of pointers has not been
changed, uninstrumented codes can work with pointers
and objects created by the instrumented code without any
modification. Conversely, it is also easy to allow instru-
mented codes to work with pointers pointing to objects
created by uninstrumented codes.

Heap objects created by uninstrumented codes are
checked like all other heap objects. They are allocated
and de-allocated using bounds-checked versions of mal-
loc and free that appropriately update the object table.
Stack and static objects declared in uninstrumented code
are calledunchecked objectsand do not appear in the ob-
ject table. Unchecked stack objects are located between
the stack pointer and the top of the stack. Unchecked
static objects are located between address 0 of the virtual
memory and the one byte beyond theBSS section, or in
the region where dynamically linked libraries are loaded.
Thus, a bounds checker can easily determine if an address
points to an unchecked object and not bother checking its
bounds.

2.1. Jones and Kelly’s Design for Handling Out-
of-bounds Pointers

The design described so far assumes that every address
is computed from a pointer that is known to be in-bounds.
What if we compute an out-of-bounds address, store it,
and then access it later? How do we know it is out of
bounds? Jones and Kelly’s design provides an answer to
this question. However, their design breaks if a stored
out-of-bounds address is used subsequently to compute
an in-bounds address. This, unfortunately, happens quite
often.

The C standard offers one possible way to the handle
out-of-bounds pointers. In the C standard, pointer arith-
metic is well defined if and only if the resulting address
lies within the extent of the array, or if it points to the very
next byte after the array. This rule also applies to scalar
objects by treating them simply as an array of one ele-
ment. The C standard allows the generation of the address
pointing immediately past an array because the value is
often used to determine if the end of the array is reached
in a loop. While it is legal to generate the address imme-
diately past an array, dereferencing it results in undefined
behavior. For all other out-of-bounds addresses, both the
generation of the address and the dereference operations
are considered to be undefined.

Jones and Kelly’s approach takes full advantage of the
language standard in their design. First, to handle the off-
by-one addresses, they pad all objects, with the exception
of parameters to a function, by an extra byte. This means
that a pointer pointing immediately past an object can be



easily identified. The pointer’s intended referent is sim-
ply the object preceding the address; the pointer can be
compared with other pointers to the same object, it can
also be stored, but dereferencing it would cause a buffer
overrun. Parameters in a function are not padded, other-
wise instrumented and uninstrumented code would have
different parameter layouts.

Second, all other out-of-bounds addresses resulting
from pointer arithmetic operations are replaced with a
specialILLEGAL value, defined as(void*) −2. These
addresses can be copied without requiring any special
handling. They can be cast to other types, as a pointer to
an array of characters for instance, before they are copied.
The ILLEGAL value is not allowed to be dereferenced or
used to generate an address. Any such operation, easily
identifiable because it is preceded by a cast to a pointer,
will cause the run-time system to halt the program and
report a buffer overrun error.

Unfortunately, many existing programs do not follow
the C standard; 60% of the programs we tested fell into
this category. In particular, there are programs that gen-
erate and store out-of-bound addresses and later retrieve
these values in their computation, without causing buffer
overruns. For example, they may be used in compar-
isons and computations of in-bounds addresses. Jones
and Kelly’s approach substitutes the out-of-bound address
with a specialILLEGAL value whenever it is computed,
thus causing such programs to no longer behave the same.

Figure 1(a) shows a simple C program that demon-
strates this problem. This program only allocates a heap
buffer to pointerp and sets all other pointers to in-bounds
and out-of-bounds locations of the buffer. Figure 1(b)
shows the memory state of an uninstrumented code af-
ter line 6. Whiles points to an illegal address,r points
to a legal one and can be dereferenced without causing
an error. If the code has been instrumented, the memory
state after line 5 is shown in Figure 1(c).p, q have the
same referent object.s is found to be out of bounds and
is therefore set to theILLEGAL value (−2). The checker
incorrectly crashes the program at line 6, since it does not
permit arithmetic on out-of-bounds pointers. It is unac-
ceptable for a checker to break working code. Figure 1(d),
described in more detail below, shows how our proposed
technique handles this program.

2.2. Proposed Out-of-Bound Addresses Handling

As discussed above, it is unacceptable to lose the stored
value of an out-of-bounds address. We must retain the
value of the pointer, and at the same time, keep track of its
referent object. Our approach is to create a uniqueout-of-
bounds object(OOB object) in the heap for every stored

out-of-bounds address value, and substitute the value with
the address of the corresponding OOB object. These ob-
jects are deallocated as soon as they are no longer needed
to minimize the space overhead. An OOB object contains
(a) the out-of-bounds address value and (b) the referent
object that the value refers to. It is not entered into the ob-
ject table, but rather entered into anout-of-bounds object
hash table(OOB hash table).

We can check if a pointer points to an OOB object
quickly by consulting this hash table. The hash table is
consulted only in the rare case where the checker could
neither find the referent object of a pointer used in a non-
copy operation in the object table nor identify the object
as unchecked.

Let us now describe our technique step by step:

1. After every address computation, the run-time sys-
tem checks if the address is out-of-bounds. If so, a
specialmalloc is invoked to create an OOB object;
the OOB object is not recorded as a regular object
in the object table, but its address is entered into the
OOB hash table. The out-of-bounds address and the
referent object’s address are stored in the OOB ob-
ject.

2. When a pointer is dereferenced, check if it points to
an object in the object table or to an unchecked ob-
ject. If neither is the case, it is an illegal reference
and the program is halted after an appropriate error
message is printed.

3. If a pointer is used in an arithmetic or comparison
operation, checks if it points to an object or to an
unchecked object. If neither is the case, check the
OOB hash table to determine if it is an out-of-bounds
value. The referent object and its value are retrieved
from the OOB itself. The desired operation is per-
formed on the actual out-of-bounds value.

4. When an object is de-allocated, implicitly if it is on
the stack and explicitly if it is on the heap, delete
all OOB objects referring to the object. This pre-
vents the hash table and the number of OOB objects
from growing indefinitely. Simply scan the hash ta-
ble for any OOB object whose referent object is be-
ing deleted, and delete the OOB object as well as the
heap entry.

Figure 1(d) demonstrates how this technique would
work on our example program. It shows the memory state
of a CRED instrumented executable after line 6. The OOB
object allows us to correctly determine the referent object



 
         { 
           1: char *p, *q, *r, *s; 
           2: 
           3:  p = malloc(4); 
           4:  q = p + 1; 
           5:  s = p + 5; 
           6:  r = s – 3; 
           …………… 
           }   

 

 
(a) (b) 

 

  

(c) (d) 
 
          
 
 

Figure 1. (a) Simple C program, memory states of (b) uninstrumented execution, (c) instrumen-
tation with Jones and Kelly Checker, (d) instrumentation with CRED.

and value ofr from the arithmetic operation ons . CRED
is therefore compatible with real-life programs.

Note that there are situations where our scheme would
fail. Assume an out-of-bounds pointer is cast to an in-
teger, used in arithmetic operation, and the result cast
back to a pointer. Subsequent use of the resulting pointer
could lead to undetected memory safety violations since
it may reference an object in the object table. One way
to guard against such problems is to perform an analy-
sis over the program to locate and warn of any unsafe
cast operations. Furthermore, similar to the Jones and
Kelly checker, CRED’s interaction with external libraries
requires no special handling for passing in-bounds point-
ers. However, for out-of-bounds pointers, the address of
the OOB object would be incorrectly passed resulting in
undefined behavior if the value is used in a non copy op-
eration. We believe this case is rare in correct code. Note
that we have not encountered such cases in the million
lines of code we tested.

3. Run-time Overhead

The poor performance of the original Jones and Kelly’s
technique is yet another obstacle to its adoption. This
scheme incurs a run-time overhead on every memory ac-
cess involving arrays and pointers. Virtually all large,
useful software uses pointers extensively and thus suffers
from a significant performance degradation.

We recognize that buffer overflow attacks are per-
petrated by overflowing a program buffer using user-
supplied string data. Thus, for security purposes, we only
need to check the bounds of string data and thus signifi-
cantly reduce the overhead of securing software systems,
without compromising the quality of protection offered.

We modified the parsing files of gcc to check the
bounds of only character arrays and pointers during the
construction of the abstract syntax tree. We introduced a
compilation flag for specifying compilation in this mode.
Thus, at run time, calls to the bounds-checking library are
made only for strings. We maintain the table for all ob-
jects regardless of type so that the bounds-checking ver-
sions of the library functions can handle casts correctly.
It is important to observe that when data is copied be-



Program Type # Lines Vuln. Tests JK CRED
Apache-1.3.24 web server 73.6K no yes fail pass
binutils-2.13.2.1 binary tools 596.5K no yes fail pass
bison-1.875 parser generator 25.1K no yes fail pass
ccrypt-1.4 encryption utility 4.4K no yes pass pass
coreutils-5.0 file, shell, & text utilities 69.5K no yes fail pass
enscript-1.6.1 ascii to postscript converter 22.1K no yes fail pass
gawk-3.1.2 string manipulation tool 36.4K yes yes fail pass
gnupg-1.2.2 OpenPGP implementation 71.2K no yes fail pass
grep-2.5.1 pattern matching utility 20.8K no yes fail pass
gzip-1.2.4 compression utility 5.8K yes yes pass pass
hypermail-2.1.5 mail to HTML converter 27.6K yes yes fail pass
monkey-0.7.1 web server 2.5K yes no pass pass
OpenSSH-3.2.2p1 SSH1 protocol implementation 43.4K no no fail pass
OpenSSL-0.9.7b SSL & TLS toolkit 162.7K no yes fail pass
pgp4pine-1.76 mail encryption tool 3.3K yes no fail pass
polymorph-0.40 filesystem unixier 0.4K yes no pass pass
tar-1.13 archiving utility 18.2K no yes pass pass
WsMp3-0.0.10 web server 3.4K yes no pass pass
wu-ftpd-2.6.1 FTP server 18.3K no no pass pass
zlib-1.13 data compression library 8.3K no yes pass pass

Figure 2. Results of compatibility experiment.

tween locations in memory, objects are usually cast down
to character pointers and not vice versa. This observation
is important in appreciating that security is not compro-
mised by this technique.

4. Experiments

We have implemented the techniques described above
in a tool called CRED. CRED has been merged into the
latest Jones and Kelly checker for gcc 3.3.1, which is cur-
rently maintained by Brugge[5]. We refer to the Jones and
Kelly checker as JK in this section.

We carried out experiments to evaluate the effective-
ness of CRED with respect to correctness, protection of-
fered against buffer overflows and the performance im-
provements obtained by strings-only checking. Here we
first describe the applications then our experimental re-
sults.

4.1. Application Programs

We used some common open-source programs for
this evaluation. Figure 2 shows the list of programs,
along with the lines of code count as generated using
SLOCCount[32]. The “Tests” column indicates whether
the program source was distributed with a test suite. The

column labeled “Vuln” indicates that the program had
a known vulnerability and a publicly available exploit.
Seven of the programs fell into this category and were
used to evaluate the protection offered by CRED. More
than 1.2M lines of C code was evaluated during this ex-
periment.

4.2. Compatibility

We first evaluated the compatibility of CRED with real-
life programs and compared it with that of JK. As a stress
test, we ran this experiment by checking for overflows for
all buffers, and not just strings. Most open-source pro-
grams are distributed with a suite of self tests. We took
advantage of the test suites for the experiment whenever
they were available, and used simple tests for those pro-
grams without a test suite.

The last two columns in Figure 2 indicate the result of
this experiment. The Jones and Kelly extension failed on
12 out of the 20 programs. This suggests that most of the
programs violate the C standard by manipulating out-of-
bounds addresses that do not just point immediately past
an object. CRED, in full bounds-checking mode, passed
all the tests. This experiment also uncovered a number of
previously unknown bounds errors in non-string buffers
when executing the test suites. This finding led to bug



fixes in coreutils, bison and OpenSSL. This result sug-
gests that CRED, in its full bounds checking mode, could
be a useful for software development and testing.

4.3. Protection

We evaluated the effectiveness of CRED in protecting
vulnerable programs against buffer overflow attacks with
two experiments. These experiments were performed
with the optimization of checking only for overruns in
strings.

Our first experiment was carried out using the seven
vulnerable programs described earlier in Section 4.1.
Each program was instrumented with CRED and attacks
were launched on them. In each case, the attempted over-
flow was detected and the program halted with an appro-
priate error message.

The second experiment tested the effectiveness of
CRED on a testbed of 20 different buffer overflow at-
tacks developed by Wilander and Kamkar for evaluating
dynamic buffer overflow detectors[34]. The implemented
attacks used two overflow techniques. These are either to
overflow the buffer all the way to the target or to redi-
rect a pointer to the target. The targets are the return
address, function pointers, old base pointer and longjmp
buffers. The overflows are attempted on the stack, heap,
bss and data segments. ProPolice[12], StackGuard[10],
StackShield[30], and Libsafe and Libverify[2] were eval-
uated in the report. CRED successfully detected all of the
attacks in the testbed. ProPolice[12], the best of the tools
evaluated by Wilander and Kamkar[34], could only de-
tect 50% of the attacks in the testbed. These experiments
demonstrate that restricting bounds checking to strings
only is effective in thwarting buffer overflow attacks on
vulnerable programs.

4.4. Performance

CRED offers better backward compatibility than the
JK technique because it tracks out-of-bounds address val-
ues. To determine the performance overhead of tracking
out-of-bounds addresses, we compare the performance of
CRED, in its full bounds-checking mode, with JK. Only
the 8 programs with which JK is compatible were used for
this experiment. The experiment was conducted by mea-
suring execution times it took the instrumented executable
to run the test suite. For programs without a test suite, we
ran simple tests described in Figure 4. The results are pre-
sented in Figure 3. The results indicate that the worst rel-
ative performance experienced is a 15% slowdown in tar.
The differences are negligible in all other cases. We also
evaluated the space used to maintain OOB data structures.

JK(s) CRED (s)
ccrypt 26.93 23.00
gzip-1.2.4 0.19 0.18
monkey-0.7.1 5.60 6.00
polymorh-0.4.0 0.39 0.39
tar-1.13 0.66 0.76
WsMp3-0.0.10 1.48 1.48
wu-ftpd-2.6.1 33.40 33.40
zlib-1.13 0.11 0.11

Figure 3. Execution times of JK and CRED
(full bounds-checking mode) instrumenta-
tion for programs that are compatible with
JK.

The largest utilization observed at any given point in time
was 976 bytes for CRED-instrumentedbison . This low
overhead was not surprising as it is unlikely that a correct
program would generate many out-of-bounds pointers at
any given point in time.

The second experiment evaluated the performance im-
provements resulting from strings-only checking for all
of the test programs. Except for those applications noted
in Figure 4, we evaluated the performance of the system
by timing the execution of the test suites. Apache and
OpenSSL are evaluated with their standard benchmarking
tools, httperf[25] for Apache and speed for openssl. The
experiments were carried out on a 2.4Ghz Intel Pentium
4, 1GB Linux system using gcc-3.0.4 compiler with -O2
optimization level. This machine also ran the server in
experiments involving the Apache, monkey and WsMp3
servers, while the client ran on a 600Mhz, dual CPU, Pen-
tium III, 1GB Linux machine.

The results of the experiment are presented in Fig-
ure 5. Full bounds checking, like the original JK system,
imposes significant performance overhead on most pro-
grams. The enscript application experiences a 11-times
slowdown, while ssh experiences a 12-times slowdown
when instrumented with full bounds checking. Limiting
the bounds-checking to strings greatly improves the per-
formance for most programs. The instrumentation im-
poses an overhead of less than 26% for 14 of the pro-
grams. The slowdown is still significant for Apache
(1.6X), enscript (1.9X), gnupg (1.8X), hypermail (2.3X),
monkey (1.8X) and pgp4pine (1.6X). These programs in-
volve significant string processing, thereby limiting the
effectiveness of our optimization. Fortunately, known
compiler optimizations can be applied to eliminate redun-



Program What was evaluated

Apache-1.3.24 Response time to 15K tcp connections at the rate of 90 per second.
monkey-0.7.1 Response time to 3K tcp connections at the rate of 50 per second.
openssh-3.2.2p1 Latency of 126MB file transfer using scp via the network loop back interface.
OpenSSL-0.9.7b Time to sign and verify 2048 bit keys using rsa.
pgp4pine-1.76 Time to decrypt 1MB file
polymorph-0.40 Time to convert names of 100 files to unix style (lower case) names.
WsMp3-0.0.10 Latency of downloading a 1.5MB file.
wu-ftpd-2.6.1 Latency of 126MB file transfer via the network loop back interface

Figure 4. Description of performance tests.

dant bounds checks in loops and thereby reduce the per-
formance penalty[15]. Static analysis techniques can also
be incorporated to reduce the portion of code that requires
instrumentation[9].

5. Related Work
A considerable amount of work has been performed

on mitigating the buffer overflow problem using either
static analysis or dynamic analysis. In addition com-
parative studies of these techniques have been carried
out[14, 28, 33, 34]. In this section we review different
works in each category.

5.1. Static Analysis Approaches

Wagner et al. developed a system for detecting buffer
overflows in C programs statically[31]. Their approach
treats C strings as an abstract data type accessed through
the library routines and models buffers as pairs of inte-
ger ranges (size and current length), while the detection
problem is formulated as an integer constraint problem.
The library functions are modeled in terms of how they
modify the size and length of strings. By trading preci-
sion for scalability their implemented tool gives both false
positives and false negatives. The tool found known and
unknown security vulnerabilities in Sendmail 8.7.5.

Larochelle and Evans[22] presented a lightweight
annotation-assisted static analysis based on LCLint[13].
This technique exploits information provided in program-
mers’ semantic comments to detect likely buffer overflow
vulnerabilities. Their tool is neither sound nor complete.

Sagiv et al. presented C String Static Verifyer (CSSV),
a tool that statically detects string manipulation errors
with the aid of procedure summaries[11]. CSSV is sound
and handles all C language constructs such as structures
and multilevel pointers. Its disadvantages are that it gen-
erates false alarms and imposes on the programmer the
extra burden of writing procedure summaries.

5.2. Dynamic Analysis Approaches

StackGuard by Cowan et al. is an extension to the GNU
C compiler that tackles the stack smashing attacks by in-
serting a canary word just before the return address on the
stack[10]. Attempts to overwrite the return address would
result in the canary value being modified. The canary is
verified when the function is about to return, and the pro-
gram is halted if the canary was altered. Bulba and Kil3r
present techniques for bypassing StackGuard[6]. Our tool
is not susceptible to these techniques.

ProPolice by Etoh and Yoda is another extension to
the GNU C compiler that protects against stack smash-
ing attacks [12]. Similar to StackGuard, ProPolice pro-
tects the return address with a guard value. In addition
stack allocated variables are rearranged such that local
char buffers are at a higher address(below the guard value)
than other local variables and pointers. Therefore local
char buffers cannot be overflowed to affect other local
variables. ProPolice offers no protection against other
forms of buffer overflow attacks, which our tool does.

StackShield is also an extension to the GNU C com-
piler that protects the return address against stack smash-
ing attacks[30]. It does so by storing a copy of the return
address in a safe place on entering a function and restor-
ing it before returning. So if the return address on the
stack is overwritten, the saved copy will be restored any-
way and used when the function returns. Techniques to
bypass StackShield are presented by Bulba and Kil3r[6].
Our tool is impervious to these techniques and thus offers
better protection to programs.

Baratloo et al. presented two complementary tech-
niques for foiling stack smashing attacks that attempt to
corrupt the return address[2]. The techniques are imple-
mented as dynamically loaded libraries Libsafe and Lib-
verify. Libsafe replaces vulnerable C library functions
with safe implementations. Libverify implements a re-
turn address verification scheme similar to StackGuard;
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Figure 5. Performance overhead of instrumentation with and without strings only checking
optimization. Non instrumented code is normalized to 1.

however it works on executables and, as such, does not
require recompilation of source code, making it applica-
ble to legacy code. A combination of both tools is inef-
fective against overflows that is caused by dereferencing
out-of-bounds addresses, which our tool correctly detects.

Lhee and Chapin presented a buffer overflow detec-
tion technique using array bounds checking[23]. In their
scheme object files are augmented with type information
about static and automatic buffers that is used to carry
out this range checking. Their technique does not guard
against overflows caused by erroneous pointer arithmetic,
making it an impractical solution. Our tool offers this pro-
tection.

Haugh and Bishop presented STOBO, an instrumenta-
tion tool that aids detection of buffer overflow vulnerabil-
ities due to use of C library functions during testing[16].
STOBO keeps track of lengths of memory buffers, checks
if they satisfy certain conditions when used as arguments

to library functions and issues warnings when buffer over-
flows may occur from such uses. STOBO finds vulnera-
bilities in programs even when the test data does not trig-
ger and overflow. However it detects only vulnerabilities
due to use of library functions. It also generates false
alarms.

5.3. Combination of Static and Dynamic Analysis

Necula et al. presented a program transformation tool
(CCured) that adds memory safety guarantees to C
programs[24, 9]. CCured first attempts to statically verify
the absence of memory errors in a program by enforcing
a strong type system. It then inserts run-time checks to
handle portions of the code for which static verification
is insufficient. CCured is incompatible with complex C
code, therefore manual intervention in the form of anno-
tations and source code changes is required for the system



to work with real-life programs. Our tool is fully auto-
matic and compatible with complex C code.

Cyclone by Jim et al. is a safe dialect of C which pre-
vents memory errors by using static analysis and runtime
checks in a similar manner to CCured [17]. Cyclone
changes pointer representation and is therefore incompat-
ible with legacy code. Also source code changes are re-
quired to make Cyclone work with real-life programs.

Kiriansky et al. presentedprogram shepherding, a tech-
nique that monitors control flow transfers during program
execution in order to enforce a security policy[21, 20].
Program shepherding builds a custom security policy for
the target program using automatic static and dynamic
analyses. Buffer overflows attack are therefore prevented
because a successful attack would require a control flow
transfer that would violate the security policy. This tech-
nique was implemented in the DynamoRIO dynamic code
modification system[3, 4]. The system works on unmod-
ified native binaries and requires no special hardware or
operating system support. However, it does not support
self-modifying code.

6. Conclusions

We presented CRED, a practical dynamic buffer over-
flow detector for C programs. Our solution is built upon
Jones and Kelly’s technique of tracking the referent object
of each pointer. Compared to the previous system, our so-
lution does not break existing codes that compute with
out-of-bound addresses and is significantly more efficient
by limiting the buffer overrun checks to strings.

Our experimental results demonstrate the compatibil-
ity of our technique with commonly used programs and
its effectiveness in detecting buffer overrun attacks in vul-
nerable programs. The overheads experienced range from
1% to 130%, depending on the use of strings in the appli-
cation. These numbers are significantly better than pre-
viously published results on dynamic bounds checking.
Further improvement in performance is possible using
known techniques for optimizing bounds checking[15],
and using static verification to reduce the portion of code
that requires instrumentation[9].
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