
Optimizing Network Virtualization in Xen

Aravind Menon
EPFL, Switzerland

Alan L. Cox
Rice university, Houston

Willy Zwaenepoel
EPFL, Switzerland

Abstract
In this paper, we propose and evaluate three techniques

for optimizing network performance in the Xen virtual-
ized environment. Our techniques retain the basic Xen
architecture of locating device drivers in a privileged
‘driver’ domain with access to I/O devices, and providing
network access to unprivileged ‘guest’ domains through
virtualized network interfaces.

First, we redefine the virtual network interfaces of
guest domains to incorporate high-level network offfload
features available in most modern network cards. We
demonstrate the performance benefits of high-level of-
fload functionality in the virtual interface, even when
such functionality is not supported in the underlying
physical interface. Second, we optimize the implemen-
tation of the data transfer path between guest and driver
domains. The optimization avoids expensive data remap-
ping operations on the transmit path, and replaces page
remapping by data copying on the receive path. Finally,
we provide support for guest operating systems to effec-
tively utilize advanced virtual memory features such as
superpages and global page mappings.

The overall impact of these optimizations is an im-
provement in transmit performance of guest domains by
a factor of 4.4. The receive performance of the driver
domain is improved by 35% and reaches within 7% of
native Linux performance. The receive performance in
guest domains improves by 18%, but still trails the native
Linux performance by 61%. We analyse the performance
improvements in detail, and quantify the contribution of
each optimization to the overall performance.

1 Introduction

In recent years, there has been a trend towards running
network intensive applications, such as Internet servers,
in virtual machine (VM) environments, where multiple
VMs running on the same machine share the machine’s

network resources. In such an environment, the virtual
machine monitor (VMM) virtualizes the machine’s net-
work I/O devices to allow multiple operating systems
running in different VMs to access the network concur-
rently.

Despite the advances in virtualization technology [15,
4], the overhead of network I/O virtualization can still
significantly affect the performance of network-intensive
applications. For instance, Sugerman et al. [15] report
that the CPU utilization required to saturate a 100 Mbps
network under Linux 2.2.17 running on VMware Work-
station 2.0 was 5 to 6 times higher compared to the uti-
lization under native Linux 2.2.17. Even in the paravirtu-
alized Xen 2.0 VMM [4], Menon et al. [10] report signif-
icantly lower network performance under a Linux 2.6.10
guest domain, compared to native Linux performance.
They report performance degradation by a factor of 2 to
3x for receive workloads, and a factor of 5x degradation
for transmit workloads. The latter study, unlike previous
reported results on Xen [4, 5], reports network perfor-
mance under configurations leading to full CPU satura-
tion.

In this paper, we propose and evaluate a number of op-
timizations for improving the networking performance
under the Xen 2.0 VMM. These optimizations address
many of the performance limitations identified by Menon
et al. [10]. Starting with version 2.0, the Xen VMM
adopted a network I/O architecture that is similar to the
hosted virtual machine model [5]. In this architecture, a
physical network interface is owned by a special, privi-
leged VM called a driver domain that executes the native
Linux network interface driver. In contrast, an ordinary
VM called a guest domain is given access to a virtualized
network interface. The virtualized network interface has
a front-end device in the guest domain and a back-end
device in the corresponding driver domain. The front-
end and back-end devices transfer network packets be-
tween their domains over an I/O channel that is provided
by the Xen VMM. Within the driver domain, either Eth-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 15



ernet bridging or IP routing is used to demultiplex incom-
ing network packets and to multiplex outgoing network
packets between the physical network interface and the
guest domain through its corresponding back-end device.

Our optimizations fall into the following three cate-
gories:

1. We add three capabilities to the virtualized net-
work interface: scatter/gather I/O, TCP/IP check-
sum offload, and TCP segmentation offload (TSO).
Scatter/gather I/O and checksum offload improve
performance in the guest domain. Scatter/gather I/O
eliminates the need for data copying by the Linux
implementation of sendfile(). TSO improves
performance throughout the system. In addition to
its well-known effects on TCP performance [11, 9]
benefiting the guest domain, it improves perfor-
mance in the Xen VMM and driver domain by re-
ducing the number of network packets that they
must handle.

2. We introduce a faster I/O channel for transferring
network packets between the guest and driver do-
mains. The optimizations include transmit mecha-
nisms that avoid a data remap or copy in the com-
mon case, and a receive mechanism optimized for
small data receives.

3. We present VMM support mechanisms for allow-
ing the use of efficient virtual memory primitives
in guest operating systems. These mechanisms al-
low guest OSes to make use of superpage and global
page mappings on the Intel x86 architecture, which
significantly reduce the number of TLB misses by
guest domains.

Overall, our optimizations improve the transmit per-
formance in guest domains by a factor 4.4. Receive side
network performance is improved by 35% for driver do-
mains, and by 18% for guest domains. We also present
a detailed breakdown of the performance benefits result-
ing from each individual optimization. Our evaluation
demonstrates the performance benefits of TSO support
in the virtual network interface even in the absence of
TSO support in the physical network interface. In other
words, emulating TSO in software in the driver domain
results in higher network performance than performing
TCP segmentation in the guest domain.

The outline for the rest of the paper is as follows. In
section 2, we describe the Xen network I/O architec-
ture and a summary of its performance overheads as de-
scribed in previous research. In section 3, we describe
the design of the new virtual interface architecture. In
section 4, we describe our optimizations to the I/O chan-
nel. Section 5 describes the new virtual memory opti-
mization mechanisms added to Xen. Section 6 presents

an evaluation of the different optimizations described. In
section 7, we discuss related work, and we conclude in
section 8.

2 Background

The network I/O virtualization architecture in Xen can
be a significant source of overhead for networking per-
formance in guest domains [10]. In this section, we de-
scribe the overheads associated with different aspects of
the Xen network I/O architecture, and their overall im-
pact on guest network performance. To understand these
overheads better, we first describe the network virtual-
ization architecture used in Xen.

The Xen VMM uses an I/O architecture which is sim-
ilar to the hosted VMM architecture [5]. Privileged
domains, called ‘driver’ domains, use their native de-
vice drivers to access I/O devices directly, and perform
I/O operations on behalf of other unprivileged domains,
called guest domains. Guest domains use virtual I/O de-
vices controlled by paravirtualized drivers to request the
driver domain for device access.

The network architecture used in Xen is shown in fig-
ure 1. Xen provides each guest domain with a number
of virtual network interfaces, which is used by the guest
domain for all its network communications. Correspond-
ing to each virtual interface in a guest domain, a ‘back-
end’ interface is created in the driver domain, which acts
as the proxy for that virtual interface in the driver do-
main. The virtual and backend interfaces are ‘connected’
to each other over an ‘I/O channel’. The I/O channel
implements a zero-copy data transfer mechanism for ex-
changing packets between the virtual interface and back-
end interfaces by remapping the physical page contain-
ing the packet into the target domain.

NIC Driver

Physical NIC

Bridge

Backend Interface Virtual Interface

Driver Domain Guest Domain

I/O Channel

Xen VMM

Figure 1: Xen Network I/O Architecture

All the backend interfaces in the driver domain (cor-
responding to the virtual interfaces) are connected to the
physical NIC and to each other through a virtual network

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association16



bridge. 1 The combination of the I/O channel and net-
work bridge thus establishes a communication path be-
tween the guest’s virtual interfaces and the physical in-
terface.

Table 1 compares the transmit and receive bandwidth
achieved in a Linux guest domain using this virtual in-
terface architecture, with the performance achieved with
the benchmark running in the driver domain and in native
Linux. These results are obtained using a netperf-like [1]
benchmark which used the zero-copy sendfile() for
transmit.

Configuration Receive (Mb/s) Transmit (Mb/s)
Linux 2508 (100%) 3760 (100%)

Xen driver 1738 (69.3%) 3760 (100%)
Xen guest 820 (32.7%) 750 (19.9%)

Table 1: Network performance under Xen

The driver domain configuration shows performance
comparable to native Linux for the transmit case and a
degradation of 30% for the receive case. However, this
configuration uses native device drivers to directly access
the network device, and thus the virtualization overhead
is limited to some low-level functions such as interrupts.

In contrast, in the guest domain configuration, which
uses virtualized network interfaces, the impact of net-
work I/O virtualization is much more pronounced. The
receive performance in guest domains suffers from a per-
formance degradation of 67% relative to native Linux,
and the transmit performance achieves only 20% of the
throughput achievable under native Linux.

Menon et al. [10] report similar results. Moreover,
they introduce Xenoprof, a variant of Oprofile [2] for
Xen, and apply it to break down the performance of a
similar benchmark. Their study made the following ob-
servations about the overheads associated with different
aspects of the Xen network virtualization architecture.

Since each packet transmitted or received on a guest
domain’s virtual interface had to pass through the I/O
channel and the network bridge, a significant fraction of
the network processing time was spent in the Xen VMM
and the driver domain respectively. For instance, 70%
of the execution time for receiving a packet in the guest
domain was spent in transferring the packet through the
driver domain and the Xen VMM from the physical inter-
face. Similarly, 60% of the processing time for a trans-
mit operation was spent in transferring the packet from
the guest’s virtual interface to the physical interface. The
breakdown of this processing overhead was roughly 40%
Xen, 30% driver domain for receive traffic, and 30%
Xen, 30% driver domain for transmit traffic.

In general, both the guest domains and the driver do-
main were seen to suffer from a significantly higher TLB

miss rate compared to execution in native Linux. Addi-
tionally, guest domains were seen to suffer from much
higher L2 cache misses compared to native Linux.

3 Virtual Interface Optimizations

Network I/O is supported in guest domains by providing
each guest domain with a set of virtual network inter-
faces, which are multiplexed onto the physical interfaces
using the mechanisms described in section 2. The virtual
network interface provides the abstraction of a simple,
low-level network interface to the guest domain, which
uses paravirtualized drivers to perform I/O on this in-
terface. The network I/O operations supported on the
virtual interface consist of simple network transmit and
receive operations, which are easily mappable onto cor-
responding operations on the physical NIC.

Choosing a simple, low-level interface for virtual net-
work interfaces allows the virtualized interface to be eas-
ily supported across a large number of physical interfaces
available, each with different network processing capa-
bilities. However, this also prevents the virtual interface
from taking advantage of different network offload capa-
bilities of the physical NIC, such as checksum offload,
scatter/gather DMA support, TCP segmentation offload
(TSO).

3.1 Virtual Interface Architecture
We propose a new virtual interface architecture in which
the virtual network interface always supports a fixed set
of high level network offload features, irrespective of
whether these features are supported in the physical net-
work interfaces. The architecture makes use of offload
features of the physical NIC itself if they match the of-
fload requirements of the virtual network interface. If the
required features are not supported by the physical inter-
face, the new interface architecture provides support for
these features in software.

Figure 2 shows the top-level design of the virtual in-
terface architecture. The virtual interface in the guest do-
main supports a set of high-level offload features, which
are reported to the guest OS by the front-end driver con-
trolling the interface. In our implementation, the features
supported by the virtual interface are checksum offload-
ing, scatter/gather I/O and TCP segmentation offloading.

Supporting high-level features like scatter/gather I/O
and TSO allows the guest domain to transmit network
packets in sizes much bigger than the network MTU, and
which can consist of multiple fragments. These large,
fragmented packets are transferred from the virtual to
the physical interface over a modified I/O channel and
network bridge (The I/O channel is modified to allow
transfer of packets consisting of multiple fragments, and

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 17



Offload Driver

NIC Driver

Physical NIC

Bridge

Backend Interface
High-level
Virtual Interface

Driver Domain Guest Domain

I/O Channel

Xen VMM

Figure 2: New I/O Architecture

the network bridge is modified to support forwarding of
packets larger than the MTU).

The architecture introduces a new component, a ‘soft-
ware offload’ driver, which sits above the network device
driver in the driver domain, and intercepts all packets to
be transmitted on the network interface. When the guest
domain’s packet arrives at the physical interface, the of-
fload driver determines whether the offload requirements
of the packet are compatible with the capabilities of the
NIC, and takes different actions accordingly.

If the NIC supports the offload features required by the
packet, the offload driver simply forwards the packet to
the network device driver for transmission.

In the absence of support from the physical NIC, the
offload driver performs the necessary offload actions in
software. Thus, if the NIC does not support TSO, the
offload driver segments the large packet into appropri-
ate MTU sized packets before sending them for trans-
mission. Similarly, it takes care of the other offload re-
quirements, scatter/gather I/O and checksum offloading
if these are not supported by the NIC.

3.2 Advantage of a high level interface

A high level virtual network interface can reduce the net-
work processing overhead in the guest domain by allow-
ing it to offload some network processing to the physical
NIC. Support for scatter/gather I/O is especially useful
for doing zero-copy network transmits, such as sendfile
in Linux. Gather I/O allows the OS to construct net-
work packets consisting of multiple fragments directly
from the file system buffers, without having to first copy
them out to a contiguous location in memory. Support for
TSO allows the OS to do transmit processing on network
packets of size much larger than the MTU, thus reduc-
ing the per-byte processing overhead by requiring fewer
packets to transmit the same amount of data.

Apart from its benefits for the guest domain, a signif-

icant advantage of high level interfaces comes from its
impact on improving the efficiency of the network virtu-
alization architecture in Xen.

As described in section 2, roughly 60% of the execu-
tion time for a transmit operation from a guest domain
is spent in the VMM and driver domain for multiplexing
the packet from the virtual to the physical network in-
terface. Most of this overhead is a per-packet overhead
incurred in transferring the packet over the I/O channel
and the network bridge, and in packet processing over-
heads at the backend and physical network interfaces.

Using a high level virtual interface improves the effi-
ciency of the virtualization architecture by reducing the
number of packets transfers required over the I/O channel
and network bridge for transmitting the same amount of
data (by using TSO), and thus reducing the per-byte vir-
tualization overhead incurred by the driver domain and
the VMM.

For instance, in the absence of support for TSO in the
virtual interface, each 1500 (MTU) byte packet transmit-
ted by the guest domain requires one page remap opera-
tion over the I/O channel and one forwarding operation
over the network bridge. In contrast, if the virtual in-
terface supports TSO, the OS uses much bigger sized
packets comprising of multiple pages, and in this case,
each remap operation over the I/O channel can poten-
tially transfer 4096 bytes of data. Similarly, with larger
packets, much fewer packet forwarding operations are re-
quired over the network bridge.

Supporting larger sized packets in the virtual network
interface (using TSO) can thus significantly reduce the
overheads incurred in network virtualization along the
transmit path. It is for this reason that the software of-
fload driver is situated in the driver domain at a point
where the transmit packet would have already covered
much of the multiplexing path, and is ready for transmis-
sion on the physical interface.

Thus, even in the case when the offload driver may
have to perform network offloading for the packet in soft-
ware, we expect the benefits of reduced virtualization
overhead along the transmit path to show up in overall
performance benefits. Our evaluation in section 6 shows
that this is indeed the case.

4 I/O Channel Optimizations

Previous research [10] noted that 30-40% of execution
time for a network transmit or receive operation was
spent in the Xen VMM, which included the time for page
remapping and ownership transfers over the I/O channel
and switching overheads between the guest and driver
domain.

The I/O channel implements a zero-copy page remap-
ping mechanism for transferring packets between the

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association18



guest and driver domain. The physical page containing
the packet is remapped into the address space of the tar-
get domain. In the case of a receive operation, the owner-
ship of the physical page itself which contains the packet
is transferred from the driver to the guest domain (Both
these operations require each network packet to be allo-
cated on a separate physical page).

A study of the implementation of the I/O channel in
Xen reveals that three address remaps and two memory
allocation/deallocation operations are required for each
packet receive operation, and two address remaps are re-
quired for each packet transmit operation. On the receive
path, for each network packet (physical page) transferred
from the driver to the guest domain, the guest domain
releases ownership of a page to the hypervisor, and the
driver domain acquires a replacement page from the hy-
pervisor, to keep the overall memory allocation constant.
Further, each page acquire or release operation requires a
change in the virtual address mapping. Thus overall, for
each receive operation on a virtual interface, two page al-
location/freeing operations and three address remapping
operations are required. For the transmit path, ownership
transfer operation is avoided as the packet can be directly
mapped into the privileged driver domain. Each transmit
operation thus incurs two address remapping operations.

We now describe alternate mechanisms for packet
transfer on the transmit path and the receive path.

4.1 Transmit Path Optimization
We observe that for network transmit operations, the
driver domain does not need to map in the entire packet
from the guest domain, if the destination of the packet
is any host other than the driver domain itself. In or-
der to forward the packet over the network bridge, (from
the guest domain’s backend interface to its target inter-
face), the driver domain only needs to examine the MAC
header of the packet. Thus, if the packet header can be
supplied to the driver domain separately, the rest of the
network packet does not need to be mapped in.

The network packet needs to be mapped into the driver
domain only when the destination of the packet is the
driver domain itself, or when it is a broadcast packet.

We use this observation to avoid the page remapping
operation over the I/O channel in the common transmit
case. We augment the I/O channel with an out-of-band
‘header’ channel, which the guest domain uses to supply
the header of the packet to be transmitted to the backend
driver. The backend driver reads the header of the packet
from this channel to determine if it needs to map in the
entire packet (i.e., if the destination of the packet is the
driver domain itself or the broadcast address). It then
constructs a network packet from the packet header and
the (possibly unmapped) packet fragments, and forwards

this over the network bridge.
To ensure correct execution of the network driver (or

the backend driver) for this packet, the backend ensures
that the pseudo-physical to physical mappings of the
packet fragments are set correctly (When a foreign page
frame is mapped into the driver domain, the pseudo-
physical to physical mappings for the page have to be up-
dated). Since the network driver uses only the physical
addresses of the packet fragments, and not their virtual
address, it is safe to pass an unmapped page fragment to
the driver.

The ‘header’ channel for transferring the packet
header is implemented using a separate set of shared
pages between the guest and driver domain, for each vir-
tual interface of the guest domain. With this mechanism,
the cost of two page remaps per transmit operation is
replaced in the common case, by the cost of copying a
small header.

We note that this mechanism requires the physical net-
work interface to support gather DMA, since the trans-
mitted packet consists of a packet header and unmapped
fragments. If the NIC does not support gather DMA,
the entire packet needs to be mapped in before it can be
copied out to a contiguous memory location. This check
is performed by the software offload driver (described in
the previous section), which performs the remap opera-
tion if necessary.

4.2 Receive Path Optimization
The Xen I/O channel uses page remapping on the receive
path to avoid the cost of an extra data copy. Previous
research [13] has also shown that avoiding data copy in
network operations significantly improves system perfor-
mance.

However, we note that the I/O channel mechanism can
incur significant overhead if the size of the packet trans-
ferred is very small, for example a few hundred bytes.
In this case, it may not be worthwhile to avoid the data
copy.

Further, data transfer by page transfer from the driver
domain to the guest domain incurs some additional over-
heads. Firstly, each network packet has to be allocated on
a separate page, so that it can be remapped. Additionally,
the driver domain has to ensure that there is no potential
leakage of information by the remapping of a page from
the driver to a guest domain. The driver domain ensures
this by zeroing out at initialization, all pages which can
be potentially transferred out to guest domains. (The ze-
roing is done whenever new pages are added to the mem-
ory allocator in the driver domain used for allocating net-
work socket buffers).

We investigate the alternate mechanism, in which
packets are transferred to the guest domain by data copy.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 19



As our evaluation shows, packet transfer by data copy
instead of page remapping in fact results in a small im-
provement in the receiver performance in the guest do-
main. In addition, using copying instead of remapping
allows us to use regular MTU sized buffers for network
packets, which avoids the overheads incurred from the
need to zero out the pages in the driver domain.

The data copy in the I/O channel is implemented us-
ing a set of shared pages between the guest and driver
domains, which is established at setup time. A single set
of pages is shared for all the virtual network interfaces in
the guest domain (in order to restrict the copying over-
head for a large working set size). Only one extra data
copy is involved from the driver domain’s network pack-
ets to the shared memory pool.

Sharing memory pages between the guest and the
driver domain (for both the receive path, and for the
header channel in the transmit path) does not introduce
any new vulnerability for the driver domain. The guest
domain cannot crash the driver domain by doing invalid
writes to the shared memory pool since, on the receive
path, the driver domain does not read from the shared
pool, and on the transmit path, it would need to read the
packet headers from the guest domain even in the origi-
nal I/O channel implementation.

5 Virtual Memory Optimizations

It was noted in a previous study [10], that guest operating
systems running on Xen (both driver and guest domains)
incurred a significantly higher number of TLB misses
for network workloads (more than an order of magnitude
higher) relative to the TLB misses in native Linux execu-
tion. It was conjectured that this was due to the increase
in working set size when running on Xen.

We show that it is the absence of support for certain
virtual memory primitives, such as superpage mappings
and global page table mappings, that leads to a marked
increase in TLB miss rate for guest OSes running on
Xen.

5.1 Virtual Memory features

Superpage and global page mappings are features intro-
duced in the Intel x86 processor series starting with the
Pentium and Pentium Pro processors respectively.

A superpage mapping allows the operating system to
specify the virtual address translation for a large set of
pages, instead of at the granularity of individual pages,
as with regular paging. A superpage page table entry
provides address translation from a set of contiguous vir-
tual address pages to a set of contiguous physical address
pages.

On the x86 platform, one superpage entry covers 1024
pages of physical memory, which greatly increases the
virtual memory coverage in the TLB. Thus, this greatly
reduces the capacity misses incurred in the TLB. Many
operating systems use superpages to improve their over-
all TLB performance: Linux uses superpages to map
the ‘linear’ (lowmem) part of the kernel address space;
FreeBSD supports superpage mappings for both user-
space and kernel space translations [12].

The support for global page table mappings in the pro-
cessor allows certain page table entries to be marked
‘global’, which are then kept persistent in the TLB across
TLB flushes (for example, on context switch). Linux
uses global page mappings to map the kernel part of the
address space of each process, since this part is common
between all processes. By doing so, the kernel address
mappings are not flushed from the TLB when the pro-
cessor switches from one process to another.

5.2 Issues in supporting VM features

5.2.1 Superpage Mappings

A superpage mapping maps a contiguous virtual address
range to a contiguous physical address range. Thus, in
order to use a superpage mapping, the guest OS must be
able to determine physical contiguity of its page frames
within a superpage block. This is not be possible in a
fully virtualized system like VMware ESX server [16],
where the guest OS uses contiguous ‘pseudo-physical’
addresses, which are transparently mapped to discontigu-
ous physical addresses.

A second issue with the use of superpages is the fact
that all page frames within a superpage block must have
identical memory protection permissions. This can be
problematic in a VM environment because the VMM
may want to set special protection bits for certain page
frames. As an example, page frames containing page
tables of the guest OS must be set read-only so that
the guest OS cannot modify them without notifying the
VMM. Similarly, the GDT and LDT pages on the x86
architecture must be set read-only.

These special permission pages interfere with the use
of superpages. A superpage block containing such spe-
cial pages must use regular granularity paging to support
different permissions for different constituent pages.

5.2.2 Global Mappings

Xen does not allow guest OSes to use global mappings
since it needs to fully flush the TLB when switching be-
tween domains. Xen itself uses global page mappings to
map its address range.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association20



5.3 Support for Virtual Memory primitives
in Xen

5.3.1 Superpage Mappings

In the Xen VMM, supporting superpages for guest OSes
is simplified because of the use of the paravirtualization
approach. In the Xen approach, the guest OS is already
aware of the physical layout of its memory pages. The
Xen VMM provides the guest OS with a pseudo-physical
to physical page translation table, which can be used
by the guest OS to determine the physical contiguity of
pages.

To allow the use of superpage mappings in the guest
OS, we modify the Xen VMM and the guest OS to co-
operate with each other over the allocation of physical
memory and the use of superpage mappings.

The VMM is modified so that for each guest OS, it
tries to give the OS an initial memory allocation such
that page frames within a superpage block are also phys-
ically contiguous (Basically, the VMM tries to allocate
memory to the guest OS in chunks of superpage size,
i.e., 4 MB). Since this is not always possible, the VMM
does not guarantee that page allocation for each super-
page range is physically contiguous. The guest OS is
modified so that it uses superpage mappings for a virtual
address range only if it determines that the underlying set
of physical pages is also contiguous.

As noted above in section 5.2.1, the use of pages with
restricted permissions, such as pagetable (PT) pages, pre-
vents the guest OS from using a superpage to cover the
physical pages in that address range.

As new processes are created in the system, the OS fre-
quently needs to allocate (read-only) pages for the pro-
cess’s page tables. Each such allocation of a read-only
page potentially forces the OS to convert the superpage
mapping covering that page to a two-level regular page
mapping. With the proliferation of such read-only pages
over time, the OS would end up using regular paging to
address much of its address space.

The basic problem here is that the PT page frames
for new processes are allocated randomly from all over
memory, without any locality, thus breaking multiple su-
perpage mappings. We solve this problem by using a
special memory allocator in the guest OS for allocating
page frames with restricted permissions. This allocator
tries to group together all memory pages with restricted
permissions into a contiguous range within a superpage.

When the guest OS allocates a PT frame from this al-
locator, the allocator reserves the entire superpage con-
taining this PT frame for future use. It then marks the en-
tire superpage as read-only, and reserves the pages of this
superpage for read-only use. On subsequent requests for
PT frames from the guest OS, the allocator returns pages
from the reserved set of pages. PT page frames freed by

the guest OS are returned to this reserved pool. Thus,
this mechanism collects all pages with the same permis-
sion into a different superpage, and avoids the breakup
of superpages into regular pages.

Certain read-only pages in the Linux guest OS, such as
the boot time GDT, LDT, initial page table (init mm), are
currently allocated at static locations in the OS binary.
In order to allow the use of superpages over the entire
kernel address range, the guest OS is modified to relocate
these read-only pages to within a read-only superpage
allocated by the special allocator.

5.3.2 Global Page Mappings

Supporting global page mappings for guest domains run-
ning in a VM environment is quite simple on the x86
architecture. The x86 architecture allows some mecha-
nisms by which global page mappings can be invalidated
from the TLB (This can be done, for example, by dis-
abling and re-enabling the global paging flag in the pro-
cessor control registers, specifically the PGE flag in the
CR4 register).

We modify the Xen VMM to allow guest OSes to use
global page mappings in their address space. On each do-
main switch, the VMM is modified to flush all TLB en-
tries, using the mechanism described above. This has the
additional side effect that the VMM’s global page map-
pings are also invalidated on a domain switch.

The use of global page mappings potentially improves
the TLB performance in the absence of domain switches.
However, in the case when multiple domains have to be
switched frequently, the benefits of global mappings may
be much reduced. In this case, use of global mappings
in the guest OS forces both the guest’s and the VMM’s
TLB mappings to be invalidated on each switch. Our
evaluation in section 6 shows that global mappings are
beneficial only when there is a single driver domain, and
not in the presence of guest domains.

We make one additional optimization to the domain
switching code in the VMM. Currently, the VMM flushes
the TLB whenever it switches to a non-idle domain. We
notice that this incurs an unnecessary TLB flush when
the VMM switches from a domain d to the idle domain
and then back to the domain d. We make a modification
to avoid the unnecessary flush in this case.

5.4 Outstanding issues

There remain a few aspects of virtualization which are
difficult to reconcile with the use of superpages in the
guest OS. We briefly mention them here.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 21



5.4.1 Transparent page sharing

Transparent page sharing between virtual machines is
an effective mechanism to reduce the memory usage
in the system when there are a large number of VMs
[16]. Page sharing uses address translation from pseudo-
physical to physical addresses to transparently share
pseudo-physical pages which have the same content.

Page sharing potentially breaks the contiguity of phys-
ical page frames. With the use of superpages, either the
entire superpage must be shared between the VMs, or no
page within the superpage can be shared. This can sig-
nificantly reduce the scope for memory sharing between
VMs.

Although Xen does not make use of page sharing cur-
rently, this is a potentially important issue for super-
pages.

5.4.2 Ballooning driver

The ballooning driver [16] is a mechanism by which
the VMM can efficiently vary the memory allocation of
guest OSes. Since the use of a ballooning driver poten-
tially breaks the contiguity of physical pages allocated
to a guest, this invalidates the use of superpages for that
address range.

A possible solution is to force memory alloca-
tion/deallocation to be in units of superpage size for
coarse grained ballooning operations, and to invalidate
superpage mappings only for fine grained ballooning op-
erations. This functionality is not implemented in the
current prototype.

6 Evaluation

The optimizations described in the previous sections
have been implemented in Xen version 2.0.6, running
Linux guest operating systems version 2.6.11.

6.1 Experimental Setup

We use two micro-benchmarks, a transmit and a receive
benchmark, to evaluate the networking performance of
guest and driver domains. These benchmarks are simi-
lar to the netperf [1] TCP streaming benchmark, which
measures the maximum TCP streaming throughput over
a single TCP connection. Our benchmark is modified to
use the zero-copy sendfile system call for transmit oper-
ations.

The ‘server’ system for running the benchmark is a
Dell PowerEdge 1600 SC, 2.4 GHz Intel Xeon machine.
This machine has four Intel Pro-1000 Gigabit NICs. The
‘clients’ for running an experiment consist of Intel Xeon

machines with a similar CPU configuration, and hav-
ing one Intel Pro-1000 Gigabit NIC per machine. All
the NICs have support for TSO, scatter/gather I/O and
checksum offload. The clients and server machines are
connected over a Gigabit switch.

The experiments measure the maximum throughput
achievable with the benchmark (either transmitter or re-
ceiver) running on the server machine. The server is
connected to each client machine over a different net-
work interface, and uses one TCP connection per client.
We use as many clients as required to saturate the server
CPU, and measure the throughput under different Xen
and Linux configurations. All the profiling results pre-
sented in this section are obtained using the Xenoprof
system wide profiler in Xen [10].

6.2 Overall Results

We evaluate the following configurations: ‘Linux’ refers
to the baseline unmodified Linux version 2.6.11 run-
ning native mode. ‘Xen-driver’ refers to the unoptimized
XenoLinux driver domain. ‘Xen-driver-opt’ refers to the
Xen driver domain with our optimizations. ‘Xen-guest’
refers to the unoptimized, existing Xen guest domain.
‘Xen-guest-opt’ refers to the optimized version of the
guest domain.

Figure 3 compares the transmit throughput achieved
under the above 5 configurations. Figure 4 shows receive
performance in the different configurations.

0

1000

2000

3000

4000

5000

Linux
Xen-driver

Xen-driver-opt

Xen-guest

Xen-guest-opt

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Transmit Throughput

Figure 3: Transmit throughput in different configurations

For the transmit benchmark, the performance of the
Linux, Xen-driver and Xen-driver-opt configurations is
limited by the network interface bandwidth, and does not
fully saturate the CPU. All three configurations achieve
an aggregate link speed throughput of 3760 Mb/s. The
CPU utilization values for saturating the network in the
three configurations are, respectively, 40%, 46% and
43%.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association22



0

500

1000

1500

2000

2500

3000

3500

Linux
Xen-driver

Xen-driver-opt

Xen-guest

Xen-guest-opt

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Receive Throughput

Figure 4: Receive throughput in different configurations

The optimized guest domain configuration, Xen-
guest-opt improves on the performance of the unopti-
mized Xen guest by a factor of 4.4, increasing trans-
mit throughput from 750 Mb/s to 3310 Mb/s. How-
ever, Xen-guest-opt gets CPU saturated at this through-
put, whereas the Linux configuration reaches a CPU uti-
lization of roughly 40% to saturate 4 NICs.

For the receive benchmark, the unoptimized Xen
driver domain configuration, Xen-driver, achieves a
throughput of 1738 Mb/s, which is only 69% of the na-
tive Linux throughput, 2508 Mb/s. The optimized Xen-
driver version, Xen-driver-opt, improves upon this per-
formance by 35%, and achieves a throughput of 2343
Mb/s. The optimized guest configuration Xen-guest-
opt improves the guest domain receive performance only
slightly, from 820 Mb/s to 970 Mb/s.

6.3 Transmit Workload

We now examine the contribution of individual optimiza-
tions for the transmit workload. Figure 5 shows the trans-
mit performance under different combinations of opti-
mizations. ‘Guest-none’ is the guest domain configura-
tion with no optimizations. ‘Guest-sp’ is the guest do-
main configuration using only the superpage optimiza-
tion. ‘Guest-ioc’ uses only the I/O channel optimization.
‘Guest-high’ uses only the high level virtual interface op-
timization. ‘Guest-high-ioc’ uses both high level inter-
faces and the optimized I/O channel. ‘Guest-high-ioc-
sp’ uses all the optimizations: high level interface, I/O
channel optimizations and superpages.

The single biggest contribution to guest transmit per-
formance comes from the use of a high-level virtual in-
terface (Guest-high configuration). This optimization
improves guest performance by 272%, from 750 Mb/s
to 2794 Mb/s.

The I/O channel optimization yields an incremental
improvement of 439 Mb/s (15.7%) over the Guest-high

0
500

1000
1500
2000
2500
3000
3500
4000

Guest-high-ioc-sp

Guest-high-ioc

Guest-high

Guest-ioc

Guest-sp

Guest-none

T
h

ro
u

g
h

p
u

t
(M

b
/s

) Transmit Throughput

Figure 5: Contribution of individual transmit optimiza-
tions

configuration to yield 3230 Mb/s (configuration Guest-
high-ioc). The superpage optimization improves this fur-
ther to achieve 3310 Mb/s (configuration Guest-high-ioc-
sp). The impact of these two optimizations by them-
selves in the absence of the high level interface optimiza-
tion is insignificant.

6.3.1 High level Interface

We explain the improved performance resulting from the
use of a high level interface in figure 6. The figure com-
pares the execution overhead (in millions of CPU cycles
per second) of the guest domain, driver domain and the
Xen VMM, incurred for running the transmit workload
on a single NIC, compared between the high-level Guest-
high configuration and the Guest-none configuration.

0

500

1000

1500

2000

2500

3000

3500

Guest-high Guest-none

C
P

U
cy

cl
e

s
o

f
e

xe
cu

tio
n

(m
ill

io
n

s)

Transmit Optimization

Xen
Driver Domain
Guest domain

Figure 6: Breakdown of execution cost in high-level and
unoptimized virtual interface

The use of the high level virtual interface reduces the
execution cost of the guest domain by almost a factor of
4 compared to the execution cost with a low-level inter-
face. Further, the high-level interface also reduces the
Xen VMM execution overhead by a factor of 1.9, and

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 23



the driver domain overhead by a factor of 2.1. These
reductions can be explained by the reasoning given in
section 3, namely the absence of data copy because of
the support for scatter/gather, and the reduced per-byte
processing overhead because of the use of larger packets
(TSO).

The use of a high level virtual interface gives perfor-
mance improvements for the guest domain even when the
offload features are not supported in the physical NIC.
Figure 7 shows the performance of the guest domain us-
ing a high level interface with the physical network in-
terface supporting varying capabilities. The capabilities
of the physical NIC form a spectrum, at one end the NIC
supports TSO, SG I/O and checksum offload, at the other
end it supports no offload feature, with intermediate con-
figurations supporting partial offload capabilities.

0

500

1000

1500

2000

2500

3000

3500

4000

TSO+SG+Csum

SG+Csum

Csum
None

Guest-none

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Transmit throughput

Figure 7: Advantage of higher-level interface

Even in the case when the physical NIC supports
no offload feature (bar labeled ‘None’), the guest do-
main with a high level interface performs nearly twice as
well as the guest using the default interface (bar labeled
Guest-none), viz. 1461 Mb/s vs. 750 Mb/s.

Thus, even in the absence of offload features in the
NIC, by performing the offload computation just before
transmitting it over the NIC (in the offload driver) instead
of performing it in the guest domain, we significantly
reduce the overheads incurred in the I/O channel and the
network bridge on the packet’s transmit path.

The performance of the guest domain with just check-
sum offload support in the NIC is comparable to the
performance without any offload support. This is be-
cause, in the absence of support for scatter/gather I/O,
data copying both with or without checksum computa-
tion incur effectively the same cost. With scatter/gather
I/O support, transmit throughput increases to 2007 Mb/s.

6.3.2 I/O Channel Optimizations

Figure 5 shows that using the I/O channel optimiza-
tions in conjunction with the high level interface (con-
figuration Guest-high-ioc) improves the transmit perfor-
mance from 2794 Mb/s to 3239 Mb/s, an improvement
of 15.7%.

This can be explained by comparing the execution pro-
file of the two guest configurations, as shown in figure 8.
The I/O channel optimization reduces the execution over-
head incurred in the Xen VMM by 38% (Guest-high-ioc
configuration), and this accounts for the corresponding
improvement in transmit throughput.

0

200

400

600

800

1000

1200

Guest-high Guest-high-ioc

C
P

U
cy

cl
e

s
o

f
e

xe
cu

tio
n

(m
ill

io
n

s)

Guest Configuration

Xen
Driver domain
Guest domain

Figure 8: I/O channel optimization benefit

6.3.3 Superpage mappings

Figure 5 shows that superpage mappings improve guest
domain performance slightly, by 2.5%. Figure 9 shows
data and instruction TLB misses incurred for the transmit
benchmark for three sets of virtual memory optimiza-
tions. ‘Base’ refers to a configuration which uses the
high-level interface and I/O channel optimizations, but
with regular 4K sized pages. ‘SP-GP’ is the Base config-
uration with the superpage and global page optimizations
in addition. ‘SP’ is the Base configuration with super-
page mappings.

The TLB misses are grouped into three categories:
data TLB misses (D-TLB), instruction TLB misses in-
curred in the guest and driver domains (Guest OS I-
TLB), and instruction TLB misses incurred in the Xen
VMM (Xen I-TLB).

The use of superpages alone is sufficient to bring down
the data TLB misses by a factor of 3.8. The use of global
mappings does not have a significant impact on data TLB
misses (configurations SP-GP and SP), since frequent
switches between the guest and driver domain cancel out
any benefits of using global pages.

The use of global mappings, however, does have a
negative impact on the instruction TLB misses in the

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association24



0

1

2

3

4

5

Base
SP-GP

SP

T
L

B
m

is
se

s
(m

ill
io

n
s/

s)

D-TLB
Guest OS I-TLB

Xen I-ITLB

Figure 9: TLB misses for transmit benchmark

Xen VMM. As mentioned in section 5.3.2, the use of
global page mappings forces the Xen VMM to flush out
all TLB entries, including its own TLB entries, on a do-
main switch. This shows up as a significant increase in
the number of Xen instruction TLB misses. (SP-GP vs.
SP).

The overall impact of using global mappings on the
transmit performance, however, is not very significant.
(Throughput drops from 3310 Mb/s to 3302 Mb/s). The
optimal guest domain performance shown in section 6.3
uses only the global page optimization.

6.3.4 Non Zero-copy Transmits

So far we have shown the performance of the guest do-
main when it uses a zero-copy transmit workload. This
workload benefits from the scatter/gather I/O capability
in the network interface, which accounts for a significant
part of the improvement in performance when using a
high level interface.

We now show the performance benefits of using a high
level interface, and the other optimizations, when using
a benchmark which uses copying writes instead of the
zero-copy sendfile. Figure 10 shows the transmit perfor-
mance of the guest domain for this benchmark under the
different combinations of optimizations.

The breakup of the contributions of individual opti-
mizations in this benchmark is similar to that for the
sendfile benchmark. The best case transmit performance
in this case is 1848 Mb/s, which is much less than the
best sendfile throughput (3310 Mb/s), but still signifi-
cantly better than the unoptimized guest throughput.

6.4 Receive Benchmark

Figure 4 shows that the optimized driver domain configu-
ration, Xen-driver-opt, improves the receive performance
from 1738 Mb/s to 2343 Mb/s. The Xen-guest-opt con-

0

500

1000

1500

2000

2500

Guest-high-ioc-sp

Guest-high-ioc

Guest-high

Guest-ioc

Guest-sp

Guest-none

T
h

ro
u

g
h

p
u

t
(M

b
/s

) Transmit Throughput

Figure 10: Transmit performance with writes

figuration shows a much smaller improvement in perfor-
mance, from 820 Mb/s to 970 Mb/s.

6.4.1 Driver domain

We examine the individual contribution of the different
optimizations for the receive workload. We evaluate the
following configurations: ‘Driver-none’ is the driver do-
main configuration with no optimizations, ‘Driver-MTU’
is the driver configuration with the I/O channel opti-
mization, which allows the use of MTU sized socket
buffers. ‘Driver-MTU-GP’ uses both MTU sized buffers
and global page mappings. ‘Driver-MTU-SP’ uses MTU
sized buffers with superpages, and ‘Driver-MTU-SP-GP’
uses all three optimizations. ‘Linux’ is the baseline na-
tive Linux configuration.

Figure 11 shows the performance of the receive bench-
mark under the different configurations.

0

500

1000

1500

2000

2500

3000

Driver-none

Driver-M
TU

Driver-M
TU-GP

Driver-M
TU-SP

Driver-M
TU-SP-GP

Linux

T
h

ro
u

g
h

p
u

t
(M

b
/s

) Receive Throughput

Figure 11: Receive performance in different driver con-
figurations

It is interesting to note that the use of MTU sized
socket buffers improves network throughput from 1738
Mb/s to 2033 Mb/s, an increase of 17%. Detailed pro-
filing reveals that the Driver-none configuration, which

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 25



uses 4 KB socket buffers, spends a significant fraction
of its time zeroing out socket buffer pages. The driver
domain needs to zero out socket buffer pages to prevent
leakage of information to other domains (section 4.2).
The high cost of this operation in the profile indicates that
the driver domain is under memory pressure, in which
scenario the socket buffer memory allocator constantly
frees its buffer pages and then zeroes out newly acquired
pages.

The second biggest source of improvement is the use
of superpages (configuration Driver-MTU-SP), which
improves on the Driver-MTU performance by 13%, from
2033 Mb/s to 2301 Mb/s. The use of global page map-
pings improves this further to 2343 Mb/s, which is within
7% of the native Linux performance, 2508 Mb/s. The
use of global page mappings alone (configuration Driver-
MTU-GP) yields an insignificant improvement over the
Driver-MTU configuration.

These improvements in performance can be shown to
be in direct correspondence with the reduction in TLB
misses in the driver domain. Figure 12 shows the effects
of the different optimizations on the data TLB misses
(millions per sec). For comparison, the data TLB misses
incurred in the native Linux configuration is also shown.

0
1
2
3
4
5
6
7

Driver-none

Driver-M
TU

Driver-M
TU-GP

Driver-M
TU-SP

Driver-M
TU-SP-GP

Linux

D
-T

L
B

M
is

se
s

(m
ill

io
n

s/
s)

D-TLB misses

Figure 12: Data TLB misses in Driver domain configu-
rations

The TLB misses incurred under the Xen driver do-
main configuration (Driver-MTU) are more than an or-
der of magnitude (factor of 18) higher than under the
native Linux configuration. The use of superpages in
the driver domain (Driver-MTU-SP) eliminates most of
the TLB overhead in the driver domain (by 86%). The
use of global page mappings (Driver-MTU-GP), by it-
self, shows only a small improvement in the TLB per-
formance. The combined use of superpages and global
mappings brings down the TLB miss count to within
26% of the miss count in Linux.

6.4.2 Guest domain

Figure 13 shows the guest domain performance in
three configurations: ‘Guest-none’ with no optimiza-
tions, ‘Guest-copy’ with the I/O channel optimization
and ‘Guest-copy-SP’ with the I/O channel and superpage
optimization. ‘Linux’ shows the native Linux perfor-
mance.

0

500

1000

1500

2000

2500

3000

Guest-none

Guest-copy

Guest-copy-SP

Linux

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Receive Throughput

Figure 13: Receive performance in guest domains and
Linux

The interesting result from figure 13 is that using
copying to implement the I/O channel data transfer be-
tween the driver and the guest domain actually performs
better than the zero-copy page remapping approach cur-
rently used. Copying improves receive performance
from 820 Mb/s to 970 Mb/s. As noted in previous sec-
tions, the current I/O channel implementation requires
the use of two memory allocation/deallocation opera-
tions and three page remap operations per packet trans-
fer. The combined cost of these operations is significant
enough to outweigh the overhead of data copy for the
receive path.

The superpage optimization has no noticeable impact
on the receive performance. This is possibly because its
benefits are overshadowed by bigger bottlenecks along
the receive path. In general, the receive performance in
guest domains remains significantly lower than the per-
formance in native Linux. As mentioned in section 2,
70% of the execution time for the receive workload is
spent in network virtualization routines in the driver do-
main and the Xen VMM. Unlike the transmit path opti-
mizations, for the receive path there are no corresponding
‘offload’ optimizations, which can amortize this cost.

7 Related Work

Virtualization first became available with the IBM
VM/370 [6, 14] to allow legacy code to run on new hard-
ware platform. Currently, the most popular full virtu-

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association26



alization system is VMware [16]. Several studies have
documented the cost of full virtualization, especially on
architectures such as the Intel x86.

To address these performance problems, paravirtual-
ization has been introduced, with Xen [4, 5] as its most
popular representative. Denali [17] similarly attempts to
support a large number of virtual machines.

The use of driver domains to host device drivers has
become popular for reasons of reliability and extensi-
bility. Examples include the Xen 2.0 architecture and
VMware’s hosted workstation [15]. The downside of
this approach is a performance penalty for device access,
documented, among others, in Sugerman et al. [15] and
in Menon et al. [10].

Sugerman et al. describe the VMware hosted virtual
machine monitor in [15], and describe the major sources
of network virtualization overhead in this architecture. In
a fully virtualized system, ‘world switches’ incurred for
emulating I/O access to virtual devices are the biggest
source of overhead. The paper describes mechanisms to
reduce the number of world switches to improve network
performance.

King et al. [8] describe optimizations to improve
overall system performance for Type-II virtual machines.
Their optimizations include reducing context switches to
the VMM process by moving the VM support into the
host kernel, reducing memory protection overhead by us-
ing segment bounds, and reducing context switch over-
head by supporting multiple addresses spaces within a
single process.

Our work introduces and evaluates mechanisms for
improving network performance in the paravirtualized
Xen VMM. Some of these mechanisms, such as the high
level virtual interface optimization, are general enough
to be applicable to other classes of virtual machines as
well.

Moving functionality from the host to the network
card is a well-known technique. Scatter-gather DMA,
TCP checksum offloading, and TCP segmentation of-
floading [11, 9] are present on high-end network devices.
We instead add these optimizations to the virtual inter-
face definition for use by guest domains, and demon-
strate the advantages of doing so.

The cost of copying and frequent remapping is well
known to the operating system’s community, and much
work has been done on avoiding costly copies or remap
operations (e.g., in IOLite [13]). Our I/O channel opti-
mizations avoid a remap for transmission, and replace a
remap by a copy for reception.

The advantages of superpages are also well docu-
mented. They are used in many operating systems, for in-
stance in Linux and in FreeBSD [12]. We provide primi-
tives in the VMM to allow these operating systems to use
superpages when they run as guest operating systems on

top of the VMM.
Upcoming processor support for virtualization [3, 7]

can address the problems associated with flushing global
page mappings. Using Xen on a processor that has a
tagged TLB can improve performance. A tagged TLB
enables attaching address space identifier (ASID) to the
TLB entries. With this feature, there is no need to flush
the TLB when the processor switches between the hy-
pervisor and the guest OSes, and this reduces the cost of
memory operations.

8 Conclusions

In this paper, we presented a number of optimizations
to the Xen network virtualization architecture to address
network performance problems identified in guest do-
mains.

We add three new capabilities to virtualized network
interfaces, TCP segmentation offloading, scatter-gather
I/O and TCP checksum offloading, which allow guest
domains to take advantage of the corresponding offload
features in physical NICs. Equally important, these ca-
pabilities also improve the efficiency of the virtualization
path connecting the virtual and physical network inter-
faces.

Our second optimization streamlines the data transfer
mechanism between guest and driver domains. We avoid
a remap operation in the transmit path, and we replace a
remap by a copy in the receive path. Finally, we provide
a new memory allocator in the VMM which tries to allo-
cate physically contiguous memory to the guest OS, and
thereby allows the guest OS to take advantage of super-
pages.

Of the three optimizations, the high-level virtual in-
terface contributes the most towards improving trans-
mit performance. The optimized I/O channel and super-
page optimizations provide additional incremental bene-
fits. Receive performance in the driver domain benefits
from the use of superpages.

Overall, the optimizations improve the transmit
throughput of guest domains by a factor of 4.4, and the
receive throughput in the driver domain by 35%. The re-
ceive performance of guest domains remains a significant
bottleneck which remains to be solved.

References

[1] The netperf benchmark. http://www.
netperf.org/netperf/NetperfPage.
html.

[2] Oprofile. http://oprofile.
sourceforge.net.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 27



[3] Advanced Micro Devices. Secure Virtual Machine
Architecture Reference Manual, May 2005. Revi-
sion 3.01.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In 19th ACM Sym-
posium on Operating Systems Principles, Oct 2003.

[5] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williamson. Safe hardware
access with the Xen virtual machine monitor. In 1st
Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OA-
SIS), Oct 2004.

[6] P. H. Gum. System/370 extended architecture:
facilities for virtual machines. IBM Journal of
Research and Development, 27(6):530–544, Nov.
1983.

[7] Intel. Intel Virtualization Technology Specification
for the IA-32 Intel Architecture, April 2005.

[8] S. T. King, G. W. Dunlap, and P. M. Chen. Op-
erating System Support for Virtual Machines. In
USENIX Annual Technical Conference, Jun 2003.

[9] S. Makineni and R. Iyer. Architectural characteri-
zation of TCP/IP packet processing on the Pentium
M microprocessor. In Proceedings of the 10th In-
ternational Symposium on High Performance Com-
puter Architecture, 2004.

[10] A. Menon, J. R. Santos, Y. Turner, G. J. Janaki-
raman, and W. Zwaenepoel. Diagnosing Perfor-
mance Overheads in the Xen Virtual Machine Envi-
ronment. In First ACM/USENIX Conference on Vir-
tual Execution Environments (VEE’05), June 2005.

[11] D. Minturn, G. Regnier, J. Krueger, R. Iyer, and
S. Makineni. Addressing TCP/IP Processing Chal-
lenges Using the IA and IXP Processors. Intel Tech-
nology Journal, Nov. 2003.

[12] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Prac-
tical, transparent operating system support for su-
perpages. In 5th Symposium on Operating Systems
Design and Implementation (OSDI 2002), Decem-
ber 2002.

[13] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite:
A Unified I/O Buffering and Caching System. ACM
Transactions on Computer Systems, 18(1):37–66,
Feb. 2000.

[14] L. Seawright and R. MacKinnon. Vm/370 - a study
of multiplicity and usefulness. IBM Systems Jour-
nal, pages 44–55, 1979.

[15] J. Sugerman, G. Venkitachalam, and B. Lim. Vir-
tualizing I/O devices on VMware Workstation’s
hosted virtual machine monitor. In USENIX Annual
Technical Conference, Jun 2001.

[16] C. Waldspurger. Memory resource management in
VMware ESX server. In Operating Systems Design
and Implementation (OSDI), Dec 2002.

[17] A. Whitaker, M. Shaw, and S. Gribble. Scale
and Performance in the Denali isolation kernel.
In Operating Systems Design and Implementation
(OSDI), Dec 2002.

Notes
1Xen also allows IP routing based or NAT based solutions. How-

ever, bridging is the most widely used architecture.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association28




