
366 IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

A SPACE-EFFICIENT FLASH TRANSLATION LAYER FOR COMPACTFLASH SYSTEMS
Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min and Yookun Cho

Abstract-Flash memory is becoming increasingly im-
portant as nonvolatile storage for mobile consumer elec-
tronics due to its low power consumption and shock resis-
tance. However, it imposes technical challenges in that a
write should be preceded by an erase operation, and that
this erase operation can be performed only in a unit much
larger than the write unit. To address these technical hur-
dles, an intermediate software layer called a flash transla-
tion layer (FTL) is generally employed to redirect logical ad-
dresses from the host system to physical addresses in flash
memory. Previous approaches have performed this address
translation at the granularity of either a write unit (page)
or an erase unit (block). In this paper, we propose a novel
FTL design that combines the two different granularities
in address translation. This is motivated by the idea that
coarse grain address translation lowers resources required
to maintain translation information, which is crucial in mo-
bile consumer products for cost and power consumption
reasons, while fine grain address translation is efficient in
handling small size writes. Performance evaluation based
on trace-driven simulation shows that the proposed scheme
significantly outperforms previously proposed approaches.

Index Terms-Flash memory, NAND-type flash memory,
FTL, CompactFlash, address translation.

I. INTRODUCTION

ECENmY, mobile computing devices such as PDAs R and digital cameras have become very popular.
These mobile devices impose different design require-
ments such as small size, lightweight, low power con-
sumption, and shock resistance. These new requirements
necessitate redesign of various components of the under-
lying computer system. In particular, design of nonvolatile
storage subsystems for mobile devices is one of the most
challenging areas since traditional magnetic disks are gen-
erally lacking in power efficiency and shock resistance due
to their mechanical nature.

Flash memory has been recognized as an attractive

Jesung Kim, Sang Lyul Min, and Yookun Cho are with the School
of Computer Science and Engineering, Seoul National University,
Korea. E-mail: jskim @archi.snu,ac.kl; symin@dandelion.snu.ac.kl;
cho@ssrnet.snu.ac. kr:

Jong Min Kim is with Samsung Electronics, Korea. Email:
jmkim @archi.snu.ac.kr:

Sam H. Noh is with the School of Information and Computer Engi-
neering, Hong-Ik University, Korea. E-mail: samhnoh@ hongik.ac.kr:

long-term storage media for mobile computers because
of its superiority in small size, shock resistance, and low
power consumption [l], [2]. Moreover, as there is no me-
chanical delay involved, random access is possible thereby
providing excellent performance. These properties make
flash-memory-based storage subsystems that emulate hard
disks very popular for secondary storage of mobile com-
puters (e.g., CompactFlash [3], and SmartMedia [4]). It
is anticipated that as the capacity of flash memory grows
[5] , the use of flash memory will become more prevalent,
coexisting with hard disks or even replacing hard disks
outright even in conventional computer systems.

Flash memory, however, has several characteristics that
make difficult straightforward replacement of magnetic
disks. First, a write in flash memory should be preceded
by an erase operation, which takes an order of magnitude
longer than a write operation. Second, erase operations
can only be performed in a much larger unit than the write
operation. This implies that, for an update of even a single
byte, an erase operation as well as restoration of a large
amount of data would be required. This not only degrades
the potential performance significantly, but also gives rise
to an integrity problem since data may be lost if the power
goes down unexpectedly during the restoration process,
which may happen frequently in hand-held devices.

To address these problems, an intermediate software
layer called ajlash translation layer (FTL) has been em-
ployed between the host application and flash memory [6],
[7]. The FTL redirects each write request from the host to
an empty location in flash memory that has been erased in
advance. Although this technique rectifies the aforemen-
tioned limitation of erase-before-write, it comes at a price
of extra flash memory operations to prepare empty loca-
tions and extra storage to maintain the address translation
information, the amount of which varies significantly de-
pending on the management algorithm.

In this paper, we propose a novel FTL design aimed
at mass storage CompactFlash systems [3]. The main
motivation of the proposed FTL is that coarse grain ad-
dress translation lowers management overhead whereas
fine grain address translation is efficient in handling small
size writes. The proposed scheme combines the two dif-
ferent granularities in address translation to allow efficient
handling of write requests smaller than a block while re-

Contributed Paper

Manuscript received April 10, 2002 0098 3063/00 $10.00 2002 IEEE

Kim et al.: A Space-Efficient Flash Translation Layer for CompactFlash Systems 3 67

Media
DRAM

ducing storage overhead of page-level address translation.
We also propose a method that assures consistency of

translation information stored in flash memory despite any
unexpected power-outages. The proposed scheme is based
on incremental updates of translation information in a ded-
icated region in flash memory. Consistency of translation
information is achieved by performing multiple updates of
translation information required to process a host request
in a single atomic flash memory write operation. The pro-
posed scheme also has an additional advantage of having
a short startup time, which is an important feature in con-
sumer devices where systems are frequently turned on and
off by users.

The organization of the remainder of the paper is as fol-
lows. The next section gives an overview of flash mem-
ory and surveys previous approaches in managing flash
memory. A detailed description of our proposed scheme is
presented in the following section. Next, we compare the
performance of our scheme with that of previous schemes
based on trace-driven simulations. Finally, concluding re-
marks are given in the last section.

11. BACKGROUND

Flash memory is a version of EEPROM that allows in-
system programming. In flash memory, data ran be writ-
ten by issuing a sequence of programming commands and
dataladdresses to the flash memory chip. The stored data
is sustained even after power is turned off and, thus, it
can be used as a nonvolatile storage media, especially for
mobile consumer devices that require small size and low
power consumption. Moreover, flash memory has the ad-
vantage of being accessed in a truly random fashion and,
thus, has potential for high performance. Table I compares
the characteristics of various storage media including two
major types (NAND and NOR types) of flash memory.

There are three basic operations that can be applied to
both types of flash memory, namely, read, write, and erase
operations. The unit of read and write operations is re-
ferred to as a page, and the size of a page is fixed from 1
byte to much larger sizes such as 2KB depending on the
product. For the erase operation, the unit is referred to as
a bEock, which consists of multiple pages, and the size of a
block is generally somewhere between 4KB and 128KB.

For NOR-type flash memory, the page size is typically
1 byte, meaning that each byte can be read and written in-
dividually. NAND-type flash memory, on the other hand,
is optimized more for mass storage, and the page size is
typically 512 bytes coinciding with the size of a sector
in hard disks. This gives an order-of-magnitude higher
write bandwidth compared to NOR-type Aash memory
since programming of each byte in the same page is fully

Read Write 1 Erase
60ns(2B) I 60ns(2B) I

TABLE I
CHARACTERISTICS OF DIFFERENT STORAGE MEDIA.

NOR
FLASH
NAND
FLASH

Disk

I II Access time I

2 S 6 p (512B) 2 . 5 6 ~ (512B)

1 4 . 4 ~ (512B) 3.53ms (512B) (128KB)
1 0 . 2 ~ (IB) 2 0 1 p (1B) 2ms

3 5 . 9 ~ (512B) 2 2 6 p (512B) (16KB)
12.4ms (512B) 12.4ms (512B)

(average) (average)

15011s (1B) 2 1 1 p (l e) 1.2s

overlapped. However, due to the block-device-like charac-
teristics, early FTL designs [6], [7], [8] relying on the in-
dividual byte programming capability of NOR-type flash
memory are not directly applicable to NAND-type flash
memory.

To aid FTL designers, NAND-type flash memory usu-
ally provides additional storage in each page called a spare
area to store a few bytes of management information [5] .
This spare area can be written at the same time when the
data is written with virtually no overhead. The spare area
is also used to store ECC code generated by outside logic
to detect errors while reading and writing [9]. Hereafter,
we limit our attention to NAND-type flash memory be-
cause of its nice properties as mass storage, such as effi-
cient bulk read/write operations, and relatively short erase
time.

Fig. 1 depicts the internal organization of a typical
NAND-type flash-memory-based CompactFlash system.
It consists of one or more NAND-type flash memory
chips, a controller executing the FTL code stored in ROM,
SRAM storing data structures relevant to address trans-
lation, and an interface to the host. The host issues
r edwr i t e commands along with the sector address and
the request size to the CompactFlash system like a hard
disk drive. Upon receipt of a command, address, and
the size, the FTL translates them into a sequence of flash
memory intrinsic commands (read/write/erase) and phys-
ical addresses. The address translation is performed by
looking up the mapping table stored in SRAM, which is
initially constructed by scanning the spare area of flash
memory. By remapping each write request to different lo-
cations, the FTL can rectify the limitation of flash memory
prohibiting overwrites transparently to the host.

The mapping between the logical address and the physi-

368

CompactFlash system

Logical
address

T
I

SRAM

address 1 I 1 erased
region ,

Fig. 1. Internal organization of a CompactFlash system.

cal address can be maintained either at the page (Le., write
unit) level or at the block (Le., erase unit) level. Page-
level address mapping allows more flexible management
because a logical page can be mapped to any physical
page in flash memory. However, this mapping requires
a large amount of SRAM to store the needed mapping ta-
ble. For example, a CompactFlash system with a 16MB
flash memory chip with a page size of 512 bytes requires
64KB of SRAM for the mapping table. Moreover, the size
of the mapping table scales as the capacity of flash mem-
ory increases, requiring 4MB of SRAM in the case of the
state-of-the-art 1GB CompactFlash system, which is pro-
hibitively large for cost, size, and power consumption rea-
sons.

In block-level address mapping, the logical address is
divided into a logical block address and a block offset, and
only the logical block address is translated into a physical
block address in flash memory in the mapping (Le., the
block offset is invariant in the translation). This mapping
is similar to the traditional address translation mechanism
found in paged virtual memory [101. Although this block-
level address mapping places a restriction that the block
offset in the mapped physical block be the same as that in
the logical block, it requires a much smaller mapping ta-
ble. For example, the same 16MB CompactFlash system
with a page size of 512 bytes and a block size of 16KB
(32 pages) requires only 2- of SRAM for the mapping
table. Moreover, the size of the block-level mapping ta-
ble does not linearly increase as in the case of page-level
mapping, since high-capacity flash memory generally has
a larger block size. For example, a 256MB flash memory
chip with a block size of 128KB [5] would require only
8KB of SRAM.

However, block-level address mapping generally in-
volves extra flash memory operations when a write request
requires an update of only part of a block. For exam-
ple, the simplest method would operate such that when-
ever there is a write request to a single page, the physical

IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

block that contains the requested page is remapped to a
free physical block, the write operation is performed to
the page in the new physical block with the same block
offset, and all the other pages in the same block are copied
from the original physical block to the new physical block.

To eliminate such an expensive copy operation, a tech-
nique based on the concept of a replacement block is pro-
posed [7], [SI. This technique, which we call the replace-
ment block scheme, allocates a temporary block called a
replacement block when there is an overwrite to an ex-
isting page in a block and performs the write operation
to the page in the replacement block with the same block
offset. Moreover, the replacement block itself may have
its own replacement block if one of its pages is ovenvrit-
ten again. Such replacement blocks belonging to the same
logical block are maintained in a linked list and traversed
for both read and write operations: for a read operation, it
is traversed to find the most up-to-date page in the replace-
ment blocks; for a write operation, it is traversed to find in
the replacement blocks the first free page with the same
block offset. When there is an overwrite request and there
is no free space, the longest linked list is merged into one
block by copying the most up-to-date pages from the re-
placement blocks to the last replacement block in the list,
which becomes the new physical block representing the
logical block. After this merge operation, the former log-
ical block and the replacement blocks except the last one
are erased and become free blocks available for replace-
ment blocks to other data blocks.

111. AN FTL DESIGN BASED ON LOG BLOCKS

In this section, we describe our proposed scheme what
we call a log block scheme in detail. Our goal is to han-
dle both small size writes and long sequential writes effi-
ciently while limiting the size of SRAM needed for map-
ping purposes. This goal is achieved by introducing a
few page-level managed blocks what we call log blocks.
An additional goal of the proposed scheme is to guaran-
tee consistency of the stored data even after unexpected
power-outages. We achieve this goal by performing up-
dates of mapping information in a single atomic write op-
eration in dedicated blocks what we call map blocks.

A. The Log Block

Our scheme manages most of the blocks at the block
level, while a small fixed number of blocks are managed
at the finer page level. The former holds ordinary data
and are called data blocks. We refer to the latter as log
blocks. Log blocks are used as temporary storage for small
size writes to data blocks. When an update to a page in
a data block is requested, a log block is allocated from

Kim et al.: A Space-Efficient Flash Translation Layer for CompactFlash Systems 369

the pool of free blocks that have been erased in advance
and the update is performed to the log block incrementally
from the first page. On each write, the logical address of
the page is also stored in the spare area that is associated
with each page. Note that the write to the spare area can
be performed simultaneously as the corresponding page is
written with virtually no overhead.

In this setting, for a read request the log blocks have to
be checked to see if the requested page is present. If the
requested page is present in the log block, it is provided to
the host system, shadowing the corresponding page in the
data block. To make this checking process efficient, we
maintain a page-level mapping table for each log block
in SRAM. This table is constructed on system startup by
scanning the logical address stored in the spare area of
each page in the log blocks, and updated on every write
to point to the up-to-date pages. Note that pages in the
log block whose logical pages have been updated multi-
ple times do not require any special handling because, by
scanning the log block backward from the last page, we
can always identify the page that contains the up-to-date
copy of a logical page.

B. Merge Operation

Once a log block is allocated for a data block, write re-
quests to the data block can be performed in the log block
without any extra operations, until all the pages in the log
block are consumed. When this happens, we reclaim the
log block by merging it with the corresponding data block.

The merge operation is very simple. It allocates an
erased block from the pool of free blocks and then fills
each page with the up-to-date page, either from the log
block if the corresponding page is present, or from the data
block otherwise (see Fig. 2a). After copying all the pages,
the new block now becomes the data block, and the for-
mer data block and the log block are returned to the pool
of free blocks, waiting to be erased. The merge operation
requires n-page read operations, n-page write operations,
and two-block erase operations (one for the log block and
the other for the former data block), where n is the number
of pages per block. As a result, it produces two free blocks
while consuming one free block, giving an efficiency of
producing one free block per two erase operations.

There are special situations where the merge operation
can be performed with only one erase operation, resulting
in an ideal efficiency of producing one free block per one
erase operation. This situation occurs when all the pages
in a block are written sequentially starting from the first
logical page to the last logical page. In this case, we can
simplify the merge operation by making the log block the
new data block and returning the data block to the pool of

Data block Free block Log block

(a) Log block merge

Data block

(b) Log block switch

Data block Replacement blocks

(c) Replacement block merge

Victim block New block

(d) Cleaning in a log-structured file system

Fig. 2. Comparison of merge operations.

free blocks (see Fig. 2b). We call this simplified version
of the merge operation the switch operation.

Note that a similar operation is also possible in the re-
placement block scheme. However, the merge operation
in the replacement block scheme incurs excessive erasure
since many pages in the replacement blocks may remain
unused due to the limitation of the placement of each page
(see Fig. 2c). Our merge operations are similar more to the
cleaning mechanism used in the log-structured file system
[111 in that it collects valid items to reclaim free space (see

370 IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

map

map

Data block

Log block
Free block

Mapping

fragments
' fable

Fig. 3. Mapping information management.

Fig. 2d). The difference lies in the fact that our scheme re-
stricts pages in a log block to be from the same data block,
and efficiency of the merge operation is independent of
the number of valid pages in the log block. In contrast, the
cleaning operation in the log-structured file system con-
sumes a portion of an empty block to relocate valid pages
in the block being cleaned, and thus the efficiency is in-
versely proportional to the number of valid pages, which
depends on the utilization as well as the policy of selecting
a block to be cleaned [l], [l l] , [12], [131, [141.

C. The Map block

Both the merge operation and the switch operation
change the mapping of the data block and thus, require an
update to the mapping information. In previous schemes,
mapping information is stored for each pageblock in the
associated spare area in the form of logical address tags.
Basically, these tags provide physical-to-logical reverse
translation information and needs to be reconstructed as
a conventional logical-to-physical mapping table. This
requires scanning of the entire space of flash memory
to collect logical address tags scattered across all the
pageshlocks, which is prohibitively time- and power-
consuming especially in NAND-type flash memory where
reading a few bytes costs virtually the same as reading a
page. Moreover, the mapping table is generally required
to be present in SRAM as a whole.

In our proposed scheme, the mapping table is stored in
dedicated blocks what we call map blocks to enable faster
startup and on-demand fetching. The map block is orga-
nized at the page level similarly to the log block such that
each page stores an incremental update of the mapping ta-
ble. The map of the mapping table, what we call a map
directory, is maintained in SRAM and is used to locate
each portion of the mapping table stored in map blocks.
This setting is similar to the traditional two-level page ta-
ble structure [lo], except that updates to the mapping table
stored in flash memory cannot be done in place, and thus
the map of the mapping table changes on every update.

Fig. 3 illustrates the contents of the mapping table be-
fore and after a merge operation. Note that the mapping ta-

ble also maps log blocks and free blocks, although they are
visible only in the virtual address space of the controller
of the storage system and transparent to the logical address
space of the host. A merge operation involves three blocks
(a data block, a log block, and a free block) and thus re-
quires updates of three mapping table entries. This may
require up to three write operations on map blocks. In our
approach, the mapping table is fragmented into a unit of
a half of a page so that two mapping table fragments fit
into a single page. By limiting the number of log blocks
plus free blocks below the maximum number of blocks
that a single mapping table fragment can map (128 in our
configuration), the updates of three mapping table entries
can be performed in a single write operation to the map
block. This assures consistency of the mapping table even
when the power goes down at an unexpected time and thus
greatly simplifies the recovery process.

Since an update of the mapping table consumes a page
in map blocks, eventually free pages will be exhausted.
Thus, a mechanism that reclaims used map blocks has to
be provided. For simplicity, our scheme uses map blocks
in a round-robin manner, and the next of the currently used
map block is cleaned before the current map block is ex-
hausted. The cleaning operation copies valid pages (i.e.,
pages that are pointed to by an entry in the map directory)
present in the next map block to the current map block, up-
dates the map directory entries of the pages being copied,
and erases the next map block.

The map directory is initially constructed by scanning
the map blocks in fixed locations from the block that was
used last (i.e., the block containing a free page) in the re-
verse order until all the pages are located. To further sim-
plify the process, the map directory can also be included
in the mapping table along with the maps for log blocks
and free blocks provided that there is a room.

Once the map directory is constructed, address trans-
lation can be performed similarly to the case of the con-
ventional two-level page table. First, the map directory is
looked up using high-ordered bits of the logical address
from the host to obtain the location of the page contain-
ing the required mapping table entry. Second, the located
page is fetched to SRAM if it is not currently there (Le.,
fetched on demand). The required mapping table entry
can then be accessed by indexing the fetched page using
middle-ordered bits of the logical address that are obtained
by truncating the high-ordered bits used to index the map
directory and the low-ordered bits used for the block off-
set. Finally, we get the physical address of the target page
by adding the block offset to the physical block address
recorded in the mapping table entry.

Kim et al.: A Space-Efficient Flash Translation Layer for CompactFlash Systems 37 1

D. Atomicity of Host Requests

Flash-memory-based storage subsystems such as Com-
pactFlash systems should maintain a consistent state even
when there is an unexpected power-outage since, for ex-
ample, users of a digital camera are allowed to remove the
CompactFlash card from the digital camera at any time.
Therefore, assuring consistency of internal data structures
is an important requirement of any FTL.

In our proposed scheme, updates of meta-data (Le., the
mapping table) are performed in a single atomic write op-
eration as explained in the previous subsection. This as-
sures that the meta-data stored in flash memory is always
consistent, even in the case where a write operation to the
map block fails due to an unexpected power outage. As
briefly explained in Section 11, failure of write operations
can be detected by checking ECC code stored in the spare
area for each page. Thus, simply ignoring the page with
an ECC error leads to reconstruction of the mapping table
to the state exactly the same as before the interrupted write
operation is issued.

Furthermore, we can handle a long sequential write re-
quest from the host as a single atomic operation by delay-
ing updates of mapping information until all the data from
the host is received completely. The received data is stored
temporarily in free blocks and switched to data blocks si-
multaneously by updating the corresponding mapping ta-
ble entries after all the data are stored. The update of the
mapping table effectively commits the host request. Note
that this modification does not degrade per€ormance. In
fact, it improves performance since several updates of the
mapping table are piggy-backed to a single write opera-
tion. This feature is useful in simplifying file-system level
consistency management since large data structures can be
updated in a single atomic operation [15], [16].

There are a few cases that need to be handled more care-
fully. First, if small size writes are directed to a log block
and are interrupted in the middle, partial results can be
seen by the host after a restart. This case can be addressed
by introducing a bit for each page in the log block that in-
dicates the end of a sequence of a write. That is, a page in
a log block with the bit cleared is regarded as valid only
when it is followed by a page with the bit set. Second, a
sufficient number of free blocks need to be available for
buffering the data from the host, or otherwise atomicity
of the request cannot be guaranteed. For this case, the
file system has a choice of letting the storage system ei-
ther to return an error or to take the risk. Finally, a se-
quence of blocks involved in a request may extend beyond
the boundary of a map fragment, and thus requires two
sequential writes to the map block before it can be com-

Fig. 4. CompactFlash prototype system.

mitted. This situation can be addressed by using a simi-
lar bit flag indicating the end of a sequence of a write as
explained above. Using this method, atomicity of higher-
level transactions may be envisioned similarly to the pre-
vious approaches in the hard-disk-based storage hierarchy
[151, ~161.

IV. PERFORMANCE EVALUATION

To evaluate the proposed FTL design, we implemented
the scheme in a prototype 16MB CompactFlash storage
system shown in Fig. 4. Also, to compare the perfor-
mance of the proposed log block scheme with that of the
replacement block scheme and the page-level remapping
scheme, we developed a simulator for each of the three
schemes and performed trace-driven simulations. The
traces that were used to drive the simulation were obtained
by plugging the prototype into four different digital cam-
eras (Canon Powershot GI, Canon PowerShot S100, Ko-
dak DC290, and Sanyo VPC-SXSOO), a PDA (Compaq
iPAQ H3630), and a notebook computer running the Linux
operating system. For this purpose, the firmware in the
prototype was slightly modified to enable trace gathering.

For the workload of the digital cameras, we operated
the cameras in their usual mode: taking, browsing, and
erasing pictures. For the PDA, we ran typical applica-
tions including web synchronization, MP3 file download
and play, and file copying. Finally, we used the Andrew
benchmark [17] for the workload of the Linux notebook
computer. The characteristics of the traces in terms of the
number of write commands and the aggregate number of
pages written are given in Table 11. The traces include
many sequential accesses as well as hot spots that are ac-
cessed intensively. Sequential access patterns are usually
from storing user data such as image files, while the hot
spots are from updates of meta-data of the file system (Mi-
crosoft FAT and Linux Ext2) due to creation/deletion of
files.

Fig. 5 shows the results for the three schemes simu-
lated including two versions of the page-level remapping
scheme with a greedy policy [l l] (denoted as P/G) and
with a cost-benefit policy [l l] , [13] (denoted as P/C). We

372 IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

Trace

Canon PowerShot G1
Canon Powershot SlOO

Kodak DC290
sanyo vPc-sx500

Compaq iPAQ H3630
Linux

TABLE I1
TRACE CHARACTERISTICS.

#ofwrite #ofpages ’
commands written is especially notable for Kodak where more than 25% of

host requests are smaller in size than a block. A number
of reasons are possible. First, it is well known that the
performance of file systems based on logging is generally
very sensitive to the utilization (Le., the ratio of storage al-
located for files to the total capacity) of the file system [11,

3,770 137,856
3,782 122,095

14,144 105,280
2,439 93,301
5,663 53,365

322 18,900

One interesting result is that our proposed scheme
sometimes even outperforms the page-level remapping

also simulated our scheme without map blocks (denoted as
L-M) to see the cost of storing the mapping table in ded-
icated blocks. The number of extra blocks indicates the
number of additional physical blocks reserved for replace-
ment blocks in the replacement block scheme, log blocks,
free blocks, and map blocks in our log block scheme, and
free blocks in the page-level remapping scheme.

Performance metrics we used are the number of extra
erase operations, which is defined as the number of erase
operations that are performed by the scheme under evalu-
ation minus the number of erase operations from an ideal
scheme. The ideal scheme is defined as a scheme that per-
forms one erase operation for every n-page write requests,
where n is the number of pages per block. The main
sources of extra erase operations are pages left unused
when replacement blocks are merged in the replacement
block scheme, consumption of a free block when the log
block is merged in the log block scheme, and consumption
of free pages to copy valid pages when a block is cleaned
in the page-level remapping scheme. Similarly, the num-
ber of extra write operations is defined as the number of
write operations performed in the scheme under evaluation
minus the number of page writes requested from the host,
and the main source of this overhead is the pages copied
when mergeklean operations are performed. Before the
measurement, the system was warmed up by running the
same trace.

From the results, we can note that the proposed log
block scheme performs significantly better than the re-
placement block scheme in terms of the number of ex-
tra erase operations consistently in every case, while over-
all performance varies substantially depending on the host
system (note the scale of the y-axis). This result comes
from the fact that the replacement block is not efficient
in handling small size writes that are repeated frequently,
such as meta-data updates, due to its limitation of block-
level mapping. In contrast, our proposed scheme handles
small size writes in the log block using page-level map-
ping, whiIe long sequential writes are performed as effi-
ciently as in block-level mapping.

point of the storage subsystem is higher than that viewed
from the file system and never becomes lower even if the
file system frees storage allocated for files, because the
storage subsystem is not aware of such upper layer activ-
ities in a strictly hierarchical design. Thus, the utilization
is dependent only on the number of extra blocks reserved
for free space, which are 16, 32, and 64 to 1,024 total
blocks in our simulation. This results in significant perfor-
mance degradation for the page-level remapping scheme
compared to other schemes with the same number of extra
blocks.

We expect that more elaborate cleaning policies com-
bined with locality gathering [12], [13], [14] could miti-
gate the performance degradation of the page-level remap-
ping scheme. However, we stress that our scheme achieves
similar effects since close addresses are gathered into a
single log block when they are written. This method has
not been used in the domain of disk-based storage systems
where successive write requests need to be performed in
physically sequential locations to minimize the seek time
regardless of their logical addresses.

We also measured wear-leveling characteristics of our
proposed scheme. For this purpose, we generated a
synthetic trace long enough to stress the storage system
by emulating a digital camera based on Microsoft FAT.
Fig. 6a plots the write frequency of the generated trace
for logical addresses. The figure clearly shows a hot spot
created by frequent updates of FAT. We drove the sim-
ulator with the trace and counted the number of erase
operations performed on each physical block and the re-
sult is shown in Fig. 6b. The result indicates that the
hot spot is evenly distributed as physical blocks are ex-
changed by mergekwitch operations. However, there still
exists blocks that are exceptionally worn, which we ob-
served are map blocks. This situation can be rectified by
swapping them with free blocks periodically as shown in
Fig. 6c, although the detailed description is not included
in this paper due to the limitation of space.

We also have performed simulation for different block
sizes and different numbers of extra blocks, and obtained
similar results. Overall, the proposed scheme performs

Kiln et al.: A Space-Efficient Flash Translation Layer for CompactFlash Systems 313

14%

12%

u) 10%

p 8%

C

m

.-

.-
a

6%

4%

2%

0%
16 32 64 16 32 64

Extra blocks

(a) Canon Powershot G1

16 32 64 16 32 64
Extra blocks

(b) Canon PowerShot SlOO

250% 16%

14%

12%
200%

Lo

s 150% e
8
2 100% 6%
W W

4%

2%

0% 0%

50%

16 32 64 16 32 64

Extra blocks

16 32 64 16 32 64

Extra blocks

(c) Kodak DC290 (d) Sanyo VPC-SXSOO

250% 12%

10% 200%
u)

2 150% E
a

6 100% e
W 3 4%

2%

0% 0%

50%

16 32 64 16 32 64
Extra blocks

16 32 64 16 32 64

Extra blocks

(e) Compaq iPAQ H3630 (f) Linux

Fig. 5. Simulation results. (R: Replacement block scheme, L: Log block scheme, L-M: Log block scheme without map blocks,
P/G: Page-level scheme with a greedy policy, PIC: Page-level scheme with a cost-benefit policy.)

374

logical address

(a) Access frequency

Fig. 6. Simulation results for wear leveling

IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

physical address

(b) Erase count

significantly better than previous block-level remapping
schemes and gives more stable performance characteris-
tics compared to the page-level remapping scheme while
keeping resource requirements substantially lower.

V. CONCLUSION

In this paper, we have proposed a novel FTL design that
lies between two extremes in address translation. One ex-
treme is the block-level address translation that imposes
limitations similar to direct-mapped caches in that pages
can be placed only on a single location in the block.
The other extreme is page-level address translation that
is equivalent to fully associative caches in that pages can
be placed anywhere without restrictions. Between the two
extreme lies our log block scheme, which corresponds to
set-associative caches in that pages can be placed any-
where within a single log block but not in other log blocks.

This property of the log block has introduced interest-
ing trade-offs. First, it performs substantially better than
the block-level translation scheme by handling small size
writes efficiently with only marginal additional resource
requirements. Second, it has a nice property of being less
sensitive to the workload and the utilization &e., the ratio
of extra space in the storage subsystem), while the pure
page-level translation scheme we have experimented with,
sometimes shows significantly degraded performance for
certain configurations. The reasoning for this result is
that in our proposed scheme data having close addresses
are gathered in a single block while in page-level transla-
tion schemes data are placed in a sequence as they arrive,
which is useful in reducing the seek time for magnetic
disks but which is not of consequence in flash memory.

We have further reduced resource requirements by orga-
nizing translation information in a way that can be fetched
on demand from flash memory. We met our budget of
6KB of SRAM to store the mapping table as well as other
FTL data structures independently of the capacity of the
storage system.

For future work, we are planning to study design issues

physical address

(c) Erase count with wear leveling

that are largely ignored in the current scheme. First, we are
exploring more efficient replacement algorithms for log
blocks that consider both recency and utilization. Second,
we are designing an intelligent background merging tech-
nique to minimize interference between demand requests
and merge operations based on a model that predicts the
available time for background processing before the next
demand request.

ACKNOWLEDGEMENTS

The authors would like to thank Jae Yong Jung and
Jongmoo Choi for their contribution to design and imple-
mentation of an earlier version of the scheme. This pa-
per would not be possible without their contribution. The
authors are also grateful to Do-Hyung Kim for his help
in implementation and evaluation of an experimental ver-
sion of the wear leveling scheme, and Yongsuk Lee, Dong
Hwan Jeon, and Eun-ae Kim for their help in performance
evaluation. This work was supported by Samsung Elec-
tronics, and in part by the Ministry of Education under the
BK21 program and the Ministry of Science and Technol-
ogy under the National Research Laboratory program.

REFERENCES
F. Douglis, R. Ciceres, F. Kaashoek, K. Li, B. Marsh, and J. A.
Tauber, “Storage altematives for mobile computers,” in Pro-
ceedings of the 1st Symposium on Operating Systems Design and
Implementation (OSDI), 1994, pp. 25-37.
B. Marsh, F. Douglis, and P. Krishnan, ‘‘Flash memory file
caching for mobile computers,” in Proceedings of the 27th
Annual Hawaii International Conference on Systems Sciences,
1994, pp. 451-460.
CompactFlash Association, “Information about CompactFlash,”
http://www.compactflash.org/.
SSFDC Forum, “Features and specifications of SmartMedia,”
http://www.ssfdc.or.jp/.
Samsung Electronics, “256M x 8 bit / 128M x 16 bit NAND flash
memory,” http://www.samsungelectronics.coml.
Intel Corporation, “Understanding the flash translation layer
(FTL) specification,” http://developer.intel.com/.
MTD, “Memory Technology Device (MTD) subsystem for
Linux,” http://www.linux-mtd.infradead.org.

http://www.compactflash.org
http://www.ssfdc.or.jp
http://www.samsungelectronics.coml
http://developer.intel.com
http://www.linux-mtd.infradead.org

Kiln et a1 : A Space-Efficient Flash Translation Layer for CompactFlash Systems 375

[8] A. Ban, “Flash file system,” United States Patent, no. 5,404,485, Sam H. Noh received the BS degree in
April 1995. computer engineering from Seoul National

[9] E. Harari, R. D. Norman, and S. Mehrotra, “Flash EEPROM Univeristy, Korea, in 1986, and the PhD degree
system,” United States Patent, no. 5,602,987, Feb. 1997. from the University of Maryland at College

[IO] A. Silberschatz and P. B. Calvin, Operating System Concepts, Park in 1993. He held a visiting faculty position
John Wiley & Sons, Inc., New York, NY, 1998. at George Waslungton University from 1993

[111 M. Rosenblum and J. Ousterhout, “The design and implementa- to 1994 before joining Hong-Ik University in
tion of a log-structured file system,” ACM Transactions on Coni- Seoul, Korea, where he is now an associate
puter Systems, vol. IO, no. 1, pp. 26-52, Feb. 1992. professor in the School of Information and
M. Wu and W. Zwaenepoel,.’ “eNVy: A Non-Volatile, main
memory storage system,” in Proceedings of the Sixth Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-6), 1994, pp. 86-
97.
A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory
based file system,” in Proceedings of the USENIX 199.5 Winter
Technical Conference, 1995, pp. 155-164.
M.-L. Chiang, P. C. H. Lee, and R.-C. Chang, “Using data
clustering to improve cleaning performance for flash memory,”
Software: Practice and Experience, vol. 29, no. 3, pp. 267-290,
March 1999.
C. Chao, R. English, D. Jacobson, A. Stepanov, and J. Wilkes,
“Mime: A high performance parallel storage device with strong
recovery guarantees,” Tech. Rep. HPL-CSP-92-9, Hewlett-
Packard Laboratories, CA, 1992.
W. de Jonge, M. E Kaashoek, and W. C. Hsieh, “The logical
disk: A new approach to improving file systems,” in Proceedings
of the 14th ACM Symposium on Operating Systems Principles
(SOSP ’93), 1993, pp. 15-28.
J. K. Howard, S. Menees, D. Nichols, M. Satyanarayanan,
N. Sidebotham, and M. West, “Scale and performance in a dis-
tributed file system,” ACM Transaction on Computer Systems,
vol. 6, no. 1, pp. 51-81, Feb. 1988.

Jesung Kim received the BS, MS, and PhD de-
grees in computer engineering from Seoul Na-
tional University, Korea, in 1991, 1993, and
1998, respectively. He was an research engi-
neer at the Information & Telecommunications
R&D Center of Hyundai Electronics, Korea,
from 1998 to 2000. He is currently a post-
doctoral researcher in the School of Computer
Science and Engineering, Seoul National Uni-

versity. His research interests include computer architecture, embed-
ded systems, memory management, and Bluetooth-based personal area
networking. Dr. Kim is a member of the IEEE.

Computer Engineering. His current research intercsts include parallel
and distributed systems, VO issues in operating systems, and real-time
systems. Dr. Noh is a member of the IEEE and the ACM.

Sang Lyul Min received the BS and MS de-
grees in computer engineenng, both from Seoul
National University, Korea, in 1983 and 1985,
respectively. In 1985, he was awarded a Full-
bright scholarship to pursue graduate studies at
the University of Washington. He received the
MS and PhD degrees in computer science from
the University of Washington, Seattle, in 1988
and 1989, respectively. He is currently a pro-

fessor in the School of Computer Science and Engineering, Seoul Na-
tional University, Korea. Previously, he was an assistant professor in
the Department of Computer Engineering, Pusan National University,
Korea, from 1989 to 1992, and a visiting scientist at the IBM T. J.
Watson Research Center, Yorktown Heights, New York, from 1989 to
1990. He has served on a number of commttees of tcchnical confer-
ences and workshops, including the IEEE Real-Time Systems Sympo-
sium (RTSS), the IEEE Real-Time Technology and Applications Sym-
posium (RTAS), the ACM SICPLAN Workshop on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES), and the Intema-
tional Conference on Distributed Computing Systems (ICDCS). He is
also a member of the editorial board of the IEEE Transactions on Com-
puters. His research interests include computer architecture, real-time
computing, parallel processing, and computer performance evaluation.
Dr. Min is a member of the IEEE.

Yookun Cho received the BS degree from Seoul
National University, Korea, in 1971 and the PhD
degree in computer science from the University
of Minnesota at Minneapolis in 1978. He has
been with the School of Computer Science and
Engineering since 1979, where he is currently a
professor. He was a visiting assistant professor
at the University of Minnesota dunng 1985 and
a director of Educational and Research Comput-

Jong Min Kim received the BS degree in com-
puter engineering from Pusan National Univer-
sity, Korea, in 1992, and the MS degree in com-
puter engineering from Seoul National Univer-
sity, Korea, in 1994. He is a PhD candidate of
Seoul National University. Currently, he is with
Samsung Electronics, Korea. His research in-
terests include memory management in operat-
ing systems, buffer management in database sys-

tems, and cache management in storage systems. He is a member of
the IEEE.

ing Center at Seoul National University from 1993 to 1995. He was a
member of the program committee of the IPPS/SPDP’98 in 1997 and
the Intemational Conference on High-Performance Computing from
1995 to 1997. His research interests include operating systems, algo-
rithms, system security, and fault-tolerant computing systems. Dr. Cho
is a member of the IEEE.

