Today: Protection

- · Goals of Protection
- Domain of Protection
- Access Matrix
- Implementation of Access Matrix
- · Revocation of Access Rights
- Capability-Based Systems
- Language-Based Protection

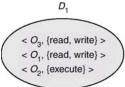
Applied Operating System Concepts

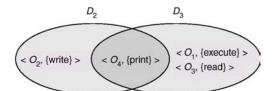
18.1

Silberschatz, Galvin, and Gagne @1999

Protection

- Operating system consists of a collection of objects, hardware or software
- Each object has a unique name and can be accessed through a well-defined set of operations.
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so.


Applied Operating System Concepts


18.2

Silberschatz, Galvin, and Gagne ©1999

Domain Structure

- Access-right = <object-name, rights-set>
 Rights-set is a subset of all valid operations that can be performed on the object.
- Domain = set of access-rights

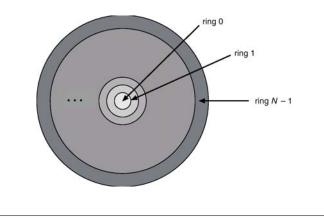
Applied Operating System Concepts

18.3

Silberschatz, Galvin, and Gagne @1999

Domain Implementation

- System consists of 2 domains:
 - User
 - Supervisor
- Domains could be a user, a process or even a procedure
 - Association between processes and domain is static or dynamic
- Example: UNIX
 - Domain = user-id
 - Domain switch accomplished via file system.
 - * Each file has associated with it a domain bit (setuid bit).
 - * When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution completes user-id is reset.


Applied Operating System Concepts

18.4

Silberschatz, Galvin, and Gagne @1999

Multics Rings

- Let D_i and D_j be any two domain rings.
- If $j < I \Rightarrow D_i \subseteq D_j$

Applied Operating System Concepts

18.5

Silberschatz, Galvin, and Gagne @1999

Access Matrix

object	F ₁	F ₂	F ₃	printer
<i>D</i> ₁	read		read	
D ₂				print
<i>D</i> ₃		read	execute	
D ₄	read write		read write	

Figure 1

Use of Access Matrix

- If a process in Domain D_i tries to do "op" on object O_j, then "op" must be in the access matrix.
- Can be expanded to dynamic protection.
 - Operations to add, delete access rights.
 - Special access rights:
 - * owner of O_i
 - * copy op from O_i to O_i
 - ⊕ control D_i can modify D_is access rights
 - * transfer switch from domain D_i to D_i

Applied Operating System Concepts

18.7

Silberschatz, Galvin, and Gagne @1999

Use of Access Matrix (Cont.)

- Access matrix design separates mechanism from policy.
 - Mechanism
 - * Operating system provides Access-matrix + rules.
 - If ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced.
 - Policy
 - User dictates policy.
 - * Who can access what object and in what mode.

Applied Operating System Concepts

18.8

Silberschatz, Galvin, and Gagne ©1999

Implementation of Access Matrix

 Each column = Access-control list for one object Defines who can perform what operation.

> Domain 1 = Read, Write Domain 2 = Read Domain 3 = Read

> > :

Each Row = Capability List (like a key)
 Fore each domain, what operations allowed on what objects.

Object 1 - Read

Object 4 - Read, Write, Execute

Object 5 - Read, Write, Delete, Copy

Applied Operating System Concepts

18.9

Silberschatz, Galvin, and Gagne @1999

Access Matrix of Figure 1 With Domains as Objects

object domain	F ₁	F ₂	<i>F</i> ₃	laser printer	D ₁	D ₂	<i>D</i> ₃	D ₄
<i>D</i> ₁	read		read			switch		
<i>D</i> ₂				print			switch	switch
D ₃		read	execute					
D ₄	read write		read write		switch			

Figure 2

Access Matrix with Copy Rights object F_1 F_2 F_3 domain write* execute D_2 execute read* execute D_3 execute (a) object F_1 F_3 domain execute write* D_2 read* execute execute D_3 execute read (b) Applied Operating System Concepts 18.11 Silberschatz, Galvin, and Gagne @1999

Access Matrix With Owner Rights object F_1 F_2 F_3 domain owner execute read* read* D_2 owner owner write* execute (a) object F_1 F_2 F_3 owner D_1 execute owner read* read* D_2 owner write* write* D_3 write write (b) Applied Operating System Concepts 18.12 Silberschatz, Galvin, and Gagne ©1999

Modified Access Matrix of Figure 2

object	F ₁	F ₂	F ₃	laser printer	D ₁	D ₂	D ₃	D ₄
<i>D</i> ₁	read		read			switch		
D ₂				print			switch	switch control
D ₃		read	execute					
D ₄	write		write		switch			

Applied Operating System Concepts

18.13

Silberschatz, Galvin, and Gagne ©1999

Revocation of Access Rights

- Access List Delete access rights from access list.
 - Simple
 - Immediate
- Capability List Scheme required to locate capability in the system before capability can be revoked.
 - Reacquisition
 - Back-pointers
 - Indirection
 - Keys

Applied Operating System Concepts

18.14

Silberschatz, Galvin, and Gagne ©1999