CMPSCI 377: Operating Systems

Homework 3 Solutions: Deadlocks and Memory Management

1. (10 pts) Deadlock. Short answer questions:

(@) A system has six tape drives (a, b, ¢, d, e,), with n threads competing for them. Each thread may need
two of the drives. For what values of n is the system deadlock free?

Solution: One thread. For two threads for example, we can get deadlock with the following:

Example
Thread 1:
: Thread 2:
a.V\a!t(); b. Wait();
b. Wi t () a WA t ()

(b) Can a system be in a state that is neither deadlocked nor safe? If yes, give an example system.

Solution: Yes. For example, given 3 units of resource A, if thread 1 has 2 units of A and its maximum is
3, and thread 2 has 1 and its maximum is 2. This state is not a safe, but if neither thread ever requests an
additional unit of A, then it is not deadlocked.

2. (20 pts) Deadlock Problem 8.9 from the textbook.
Using the terminology defined in class (also defined in Sec 7.6.2), we have

(@ Xty Maz;<m+n
(b) Maz; > 1forall:
Also, Need; = Maz; — Alloc;. Assume there exists a deadlock. Then:

(€) >ieq Alloc; =m

Using (a) we get: >~ Need; + - Alloc; = > Max; <m+n
Using (c) we get: >~ Need; + m < m+n
Thatis, >°7' ; Need; < n

This imples that there exists a process P; such that Need; = 0. Since Max; > 1, it follows that P; has at

least one resource it can release. Hence, the system cannot be in a deadlock state.

3. (10 pts) Deadlock. Consider the following system snapshot using the data structures in the Banker’s algo-
rithm, with resources A, B, C, and D, and processes Pq to Py.

Allocation Max Available Need
A B C D|/A B C D/A B C D|A B C D
3 2 1 0
Po/3 0 0 2|6 0 1 2 3 0 1 0
P11 0 0 0|1 7 5 0 0 7 5 0
P11 3 5 4|2 3 5 6 1 0 0 2
P3|/ 0 6 3 2|1 6 5 2 1 0 2 0
P,/O O 1 4|1 6 5 6 1 6 4 2

Using Banker’s algorithm answer the following questions.

(a) How many resources of type A, B, C, and D are there?

Solution: (allocation + available) {5,9,9,12} + {3,2,1,0} = {8.11,10,12}
(b) What is the content of the Need matrix?

Solution: See above table.

(c) Is the system in a safe state? Why?
Solution: Yes, Py can finish with its current resources and what’s in available. When it finishes, avail
becomes {6,2,1,2}. Now, P, can complete and then avail would be: {7,5,6,6}. Now, P35 can complete
and then avail would be: {7,11,9,8}. Then either P; or P4 can complete, followed by the other.

(d) Ifarequest from process P4 arrives for additional resources of (1,2,0,0), can the Banker’s algorithm grant
the request immediately? Show the new system state, and other criteria.

Solution: No the request cannot be granted because all of none of the process are able to request their
max number of resources, i.e., for all processes ¢ = 0, 4, need(z) > avail(z).

Allocation Max Available Need
A B C D|A B C D|/A B C D|A B C D
2 0 1 0
Po/3 0 0 2|6 0 1 2 3 0 1 0
P11 0 0 O|1 7 5 0 0 7 5 0
P,|1 3 5 4|2 3 5 6 1 0 0 2
P3|/ 0 6 3 2|1 6 5 2 1 0 2 0
P,/O O 1 4|1 6 5 6 0 4 4 2

4. (10 pts) Consider a segmented memory system with memory allocated as shown below.

0
A
400
800
B
1600
1900
c
2400
3100
D
340

Suppose the following actions occur:

e Process E starts and requests 300 memory units.
e Process A requests 400 more memory units.

e Process B exits.

e Process F starts and requests 800 memory units.
e Process C exits.

e Process G starts and requests 900 memory units.

(a) Describe the contents of memory after each action using the first-fit algorithm.

e E requests 300: E is allocated in 400-700

o A requests 400 more: cannot fit because the entire process is allocated in a single continuous chunk
of memory in a segmented memory system. Need to compact memory: move B to 1100-1900, move
E to 2400-2800, give A additional addresses 400-800

B exits: there is a hole between 800-1900

F requests 800: F is allocated in 800-1600

C exits: there is a hole between 1600-2400

G requests 900: no hole that is big enough. Compact memory: move E to 2800-3100, G is allocated
in 1600-2500

(b) Describe the contents of memory after each action using the best-fit algorithm.

E requests 300: E is allocated in 1600-1900

A requests 400 more: this 400 is allocated in 400-800
B exits: there is a hole between 800-1600

F requests 800: F is allocated in 800-1600

C exits: there is a hole between 1900-3100

G requests 900: G is allocated in 1900-2800

(c) How would worst fit allocate memory?

E requests 300: E is allocated in 2400-2700

A requests 400 more: this additional 400 is allocated in 400-800

B exits: there is a hole between 800-1900

F requests 800: F is allocated in 800-16000

C exits: there is a hole between 1600-2400

G requests 900: no hole big enough. Need to compact: move E to 2800-3100, give 1600-2500 to G

(d) For this example, which algorithm is best?
For this example, best-fit is best.

