
1. Contiguous Memory Allocation
 (a) see figure on the last page

• Advantages:

-- OS can easily move a process during execution.
-- OS can allow a process to grow over time.
-- Simple, fast hardware: two special registers, an add, and a compare.

• Disadvantages:

-- Slows down hardware due to the add on every memory reference.
-- Can’ t share memory (such as program text) between process.
-- Process is still li mited to physical memory size.
-- Degree of multiprogramming is very limited since all memory of all active processess must

fit in memory.
-- Complicates memory management.

(b) Fragmentation

(i)According 50% rules --- for every 2N chunk of memory allocation, N chunks are wasted due to
fragmentation, so statistically 1/3 of 128 MB that is 42 MB is wasted

 due to external fragmentation.
 In theory, contiguous memory allocation doesn’ t suffer from internal fragmentation, since a
 process can be allocated exactly what it needs. But in practice, if the OS allocates memory than
 requested to avoid tracking small holes, a small fraction may be lost of the internal
 fragmentation
(ii)pure paging --- no external fragmentation
 internal: ½ a page(4 KB) per process.

2. Page Replacement
(a) Belady’s anomaly: Increasing the number of frames allocated to a process increases the number of
 page faults suffered by the process.

To avoid: any replacement algorithm that caches a superset of the pages cached with a
small number of frames won’ t suffer from Belady’s anomaly.

(b) A B C D A B E A B C D E
frame1 A A A A A A A A A C D D
frame2 B B B B B B B B B B B
frame3 C D D D E E E E E E
page fault(y/n) Y Y Y Y N N Y N N Y Y N

Number of page faults = 7

 A B C D A B E A B C D E
frame1 A A A A A A A A A A D D
frame2 B B B B B B B B B B B
frame3 C C C C C C C C C C
frame4 D D D E E E E E E
page fault(y/n) Y Y Y Y N N Y N N N Y N

Number of page faults = 6

(c) OPT should not suffer from Belady’s anomaly.
OPT cashes a superset of pages with 4 frames compared to 3 frames.

3.Paging and Segmentation Paging
(a) page table = 28 / 2 5 = 2 3 = 8 entries

physical memory = 2 9 bytes
number of frames = 2 9 / 2 5 = 2 4 ⇒ 4 bits for p
page size = 2 5 ⇒ 5 bits for d
p + d = 4 + 5 = 9 bits

(b) 3ma
 h (s + t + ma) + (1 - h) (s + t + 2ma) (h is the hit rate)

4.File Systems
(a)

(i) totally 2 I/Os needed :
1 I/O to find a free block & update the free block list
1 I/O to write the block & link it to the 2nd block
Since the file descriptor is in memory, no I/O needed to update it, in practice the file
descriptor is no disk, that would need another I/O.

(ii) totally 52 I/Os needed :
50 I/Os to get the 50th block
1 I/O needed to have the 49th block point to the 51st block & write out the 49th block

 1 I/O needed to insert the freed block to the head of free block list & write it out.
(iii) totally 103 I/Os needed :

100 I/Os to get the 100th block
1 I/O to get a free block & update the free block list
1 I/O to link the 100th block to 101st block
1 I/O to write the 101st block out.

(b) (12 + 1000+ 10002) * 8

(c) Start with a bitmap with 1 bit for each block
 Initially all bits are set to 0
 Scan each file, traverse its linked list & set the bit of each block belonging to a file to 1
 Now, all blocks allocated to files will have their bits set to 1
 All blocks with bits 0 belong to the free block list
 The head of the free block list can be fine by checking each free block & see if it points to

another block, if so, mark that block as 1
At the end of this, you will be left with 1 free block that no other free block points to , this

is the head.

